Metal Mining - Tungsten Carbide Drilling on the Marquette Range

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 284 KB
- Publication Date:
- Jan 1, 1952
Abstract
IN the development of iron mines and production of iron ore from the Marquette range, drilling blast-holes is an important phase of the mining cycle. The ground drilled in ore production can be classified into two main categories, soft hematite and hard hematite or magnetite. Within these categories the material exhibits a wide range of penetrability by percussion drills. Development work encounters various types of rock. Slate and altered basic intrusives constitute the softer types commonly encountered. Harder materials are represented mainly by greywacke, quartzite, iron formation, and diorite. Prior to the first tungsten carbide trials in late 1947 and early 1948, hard-rock and ore drilling was done with steel jackbits starting at 21/4-in. diam. These were reconditioned by hot milling. Automatic or handcrank 31/2-in. drifters were employed, mounted on Jumbos, posts and arms, or tripods, depending upon the working place. With the exception of shaft sinking jobs where 55-lb sinker machines were and still are used with 1-in. quarter octagon steel, the other production and development mining utilized 11/4-in. round and Leyner-lugged steel. The following properties have been selected as typical examples wherein carbide bit applications have proved economical. The Mather mine "A" and "B" shafts and Cleveland-Cliffs Iron Co. mines are soft ore mines where insert bits are used in rock development only. The Greenwood mine, Inland Steel Co., Champion mine, North Range Mining Co., and Cliffs shaft mine, Cleveland-Cliffs Iron Co., are hard ore mines where all drilling is done with tungsten carbide bits. Mother Mine "A" Shaft In the Mather mine "A" shaft and other soft ore properties where only rock development work is done with the tungsten carbide bits, several types and makes of bits have been tried since early 1948. The greatest proportion of failures have been at the connection end, although the early trials with the 13 Series Carset 11/2-in. bit used in conjunction with 31/2 -in. automatic-feed drifters, showed an equal amount of shattered inserts. To combat this shattering, the 31/2 -in. drifters were replaced by 3-in. drifters, thus eliminating, for the most part, insert failures. However, the attachment end of the rod continued to be the main source of trouble. The greatest amount of failure was in the stud or at the upset section approximately 2 in. behind the drive shoulder of the rod. Heat treatment was changed several times as well as the composition of the alloy studs. Since this failed to correct the trouble, a decision was made to change to a heavier attachment section. Timken 11/2-in., type M, bits were then employed and showed an exceptional improvement. The rods are discarded when the thread contour shows sharpening or wear on the shoulder. It was also learned that the Timken insert did not show as rapid gage and cutting edge wear as did competitive makes, and footage per use increased by approximately 50 pct. Prior to the Timken trials the average life per bit at the Mather mine "A" shaft on 6-ft change chain-feed drifters was 500 ft, and the rod life at the connection end was 50 ft. The Timken bit with chrome-plated thread averaged 1200 ft, and rod life increased to as much as 500 ft. However, the life of the connection end was much better on shorter length drill rods or in places where machines with 34-in. change were used. The bit thread continued to be the point of ultimate failure with thread strippage, constituting the cause for discard of bits. In one of the new development headings, harder rock was encountered for approximately 800 ft, dropping the life per bit to a low of 90 ft with shank and thread life of rods dropping to approximately 125 ft average. The stripped bits were then welded to the rods, increasing the life per bit by 75 to 100 pct. The rod transportation for main level development was not a problem so intraset rods were tried. Intraset rods have tungsten carbide inserts set into the rods proper by the manufacturer and can be obtained with chisel or four point bits. This type of rod eliminates the need for any connection and the steel being a special alloy will show more feet drilled per rod. The first trial was made with eight rods, and final results averaged 350 ft per rod, six of the rods worked the life of the bit end, and two broke shanks at less than 50 ft. The preceding example showed a considerable improvement, so additional steel of the same type was purchased, but its use has been limited to main level drifting only, because of the handling problem involved in transportation of the complete rod to mine shops for resharpening. Further trials are being made on improving the life per detachable bit by chrome plating. To date, the chrome plating shows an improvement of approximately 100 pct. However, final results will not be known until the present long term trials have been completed. Mother Mine "B" Shaft In November 1947, tungsten carbide bits were first tried at the Mather mine "B" shaft. The use of 1%-in. Carset 13 Series bits, for drilling the 72-hole, 7-ft shaft round, decreased the drilling time from an average of 41/2 hr per round required with steel bits, to 2 hr with insert bits. The best drilling time for
Citation
APA:
(1952) Metal Mining - Tungsten Carbide Drilling on the Marquette RangeMLA: Metal Mining - Tungsten Carbide Drilling on the Marquette Range. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.