Metal Mining - Underground Radio Communication in Lake Superior District Mines

The American Institute of Mining, Metallurgical, and Petroleum Engineers
E. W. Felegy
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
315 KB
Publication Date:
Jan 1, 1954

Abstract

THE need for improved mine communication to increase efficiency and to insure greater safety has long been recognized. General and unrestricted communication between all points underground, and between the surface and all points underground, is probably the least advanced phase of the mining industry. An ideal system of mine communication must require no fixed wire installations. The equipment must be small, lightweight, and readily portable, and the power requirements low. A system that can be used not only under normal circumstances but also in an emergency, when the continuity of wires, tracks, and pipelines may be disrupted, must function independently of any aid furnished by standard installations. Radio communication offers possibilities of meeting all the requirements necessary for an ideal communication system in underground mines. Transmission of signals must be achieved through one or both of two mediums, through the air in mine openings or through the strata. The results or lack of results obtained by early investigators showed conclusively that radio communication by space transmission cannot be accomplished effectively beyond line-of-sight distances in underground passageways. A radio system underground therefore must depend solely upon transmission through soil and strata. The application of radio to underground mine communication was investigated by many individuals and agencies at different times in the last several decades, but little success was achieved before World war 11.2-0, The results of experiments during the war, and further knowledge gained in experiments with vastly improved communication methods and equipment after the war provided the background for additional research in radio communication in underground mines. During 1950 to 1.952 the University of Minnesota sponsored an investigation to determine the possibility of developing: a system of radio communication universally applicable in underground metal mines in the Lake Superior district. The possibility of using radio equipment to determine the imminence of rock bursts in deep copper mines in that district also was investigated. The investigation supplemented previous and concurrent emergency mine communication studies of the U. S. Bureau of Mines. Testing equipment and laboratory facilities maintained by the Bureau of Mines at Duluth, Minnesota, were used in the research program, which was conducted as a mining engineering graduate research problem by the present writer under the direction of T. L. Joseph and E. P. Pfleider. The radio units used in the research program were designed and built to specification solely to conduct tests of radio communication in mines. Two identical units were used in all tests. Each unit contained a transmitter section, a receiver section, and a power-supply section, mounted on a single chassis. The entire unit was enclosed in a single 10x12x18-in. metal case provided with a leather-strap handle for carrying purposes. The front of the case was hinged to open upward and provide easy access to the single control panel on which all controls were mounted. Storage batteries supplied the operating power for all tests. Standard 6-v automobile batteries were utilized to provide adequate capacity to conduct tests for a full day without exhausting the battery. A frequency range from 30 to 200 kc was covered in eight pre-fixed steps on each unit. The carrier frequencies were crystal-controlled and amplitude-modulated. The receiver employed an essentially standard superheterodyne circuit and was sufficiently sensitive to detect signal strengths of 5 micro v. A heterodyne circuit was employed in the transmitter to obtain the low-carrier frequencies used in the units. Power output of the transmitter, usually less than 2 w, rarely exceeded 3 w in any test. Tests were conducted in mines on the Vermillion iron range in Minnesota, the Gogebic iron range in Wisconsin, the Menominee and Marquette iron ranges in Michigan, and a copper mine in the upper Michigan peninsula. All tests were conducted when the mines were operating normally, and usual mining, maintenance, and transportation activities were in progress, so that any interference caused by normal production activities could be evaluated during the tests. Tests were made between different points underground in each mine, and between underground and surface points at some mines. Test readings obtained at any one mine were calibrated in the laboratory before another series of tests were begun at the next mine. The transmitter and receiver were separated by one or more levels in each test, and generally there was no other means of communication between test points. Two 100-ft lengths of rubber-covered wire were used for antenna wires on each unit in both transmission and reception. The ends of the wires were connected to ground points in one of several methods, depending upon physical conditions at each test site. The wires were clipped to metal rods about 200 ft apart in the back, side, or bottom of the mine opening where the character of the rock permitted driving rods. Both wires were clipped to points about
Citation

APA: E. W. Felegy  (1954)  Metal Mining - Underground Radio Communication in Lake Superior District Mines

MLA: E. W. Felegy Metal Mining - Underground Radio Communication in Lake Superior District Mines. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account