Minerals Beneficiation - Adsorption of Ethyl Xanthate on Pyrite

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. M. Gaudin P. L. De Bruyn O. Mellgren
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
488 KB
Publication Date:
Jan 1, 1957

Abstract

The adsorption density of ethyl xanthate on pyrite was determined as a function of xanthate concentration. Surface preparation of the mineral appears to have asafunctionsome effect on the subsequent adsorption process, A monolayer of xanthate on the surface is exceeded only in presence of oxygen. The effect of OH- , HS- (and x and CN- S=)and on the amount of xanthate adsorbed was investigated. Competition between OH- and X- (xanthate) ions for specific adsorption sites is indicated over a wide pH range. IN the flotation of sulfide ores, xanthates are most commonly used to prepare the surface of the mineral to be floated so that attachment to air takes place. The quantity of agent required to make the mineral hydrophobic is usually very small, of the order of 0.1 to 0.25 lb per ton of mineral. Details of the mechanism of pyrite collection are for the most part unsettled. Adsorption of collector has long been believed to involve an ion exchange mechanism as demonstrated for galena' and for chalcocite.2 In the work on chal-cocite it was also demonstrated that a film of xanthate radicals unleachable in solvents that dissolve alkali xanthates, copper xanthate, or dixanthogen was formed at the surface of the mineral. The unleachable product increased with increasing addition of xanthate up to a maximum corresponding to an oriented monolayer of xanthate radicals. Pyrite is extremely floatable with xanthate if its surface is fresh.9 ut the floatability decreases rapidly as oxide coatings increase in abundance. Pyrite shows zero contact angle when in contact with ethyl xanthate solution at pH higher than about 10.5;4 at neutrality, a contact angle of 60" is obtained at a reagent concentration of 25 mg per liter. Alkali sulfides and cyanides are pyrite depressants. In this study of pyrite collection the writers have sought to relate measured xanthate adsorption to the method used in preparing pyrite, to the presence or absence of oxygen, to concentration of hydroxyl, hydrosulfide, sulfide, and cyanide ions. The principal experimental tool has been radioanalysis," " using xanthatcx marked with sulfur 35. Experimental Materials Pyrite: Unlike most sulfides, pyrite is a poly-sulfide. The structure given by Bragg7 resembles that of sodium chloride, the iron atoms corresponding to the position of sodium and pairs of sulfur atoms corresponding to the position of chlorine. The edge of the unit cell in pyrite is 5.40 A and in halite 5.63 A. The S-S distance in pyrite is 2.10 A; the Fe-S distance, 3.50 A: and the Fe-Fe distance, 3.82 A. Natural pyrite from Park City, Utah, was used in this investigation. Pyrite 1 was obtained by hand picking pure crystals. Pyrite 2 and Pyrite 3 were obtained from finer textured crystalline material containing inclusions of silicates. The same cleaning technique was utilized for the preparation of Pyrite 2 and Pyrite 3, whereas a different cleaning technique was used for Pyrite 1. Pyrite 1 was prepared as follows: The crystals were ground in a porcelain ball mill and the 200/400 mesh fraction was separated by wet screening with distilled water, followed by washing for 1 hr with deoxygenated distilled water acidified with sulfuric acid to pH 1.5. The acid was removed by rinsing with deoxygenated distilled water on a filter until a pH of 6.0 was reached in the effluent. This filtration was carried out under nitrogen. The sample was then dried in a desiccator under nitrogen. The period of time for which this pyrite sample was in contact with water containing oxygen was about 4 hr. The specific surface as determined by the BET gas adsorption method was 582 cm2 per g. Final material assayed 53.12 pct sulfur and 46.5 pct iron (theoretical, for FeS,: S, 53.45 pct; Fe, 46.55 pct). After crushing, Pyrite 2 and Pyrite 3 were washed with 1 M HCl. rinsed, and fed to a laboratory shakinq table to remove the small amount of silicates. The concentrate obtained was ground in a laboratory steel ball mill. The 200/400 mesh fraction was separated by classification in a Richards hindered settling tube. This fraction was then given a final wash with 0.1 M HCl and deoxygenated water was filtered through the sample. The final effluent showed a conductivity equivalent to that of a solution having a salt concentration of 0.3 ppm. Aqueous hydrogen sulfide solution was then added to the sampln (about 100 ml saturated H,S solution to about 1000 g pyrite under a few hundred milliliters of water) which was stored wet under nitrogen. The sample stored in this manner showed no indication of formation of iron oxides, whereas iron oxides appeared
Citation

APA: A. M. Gaudin P. L. De Bruyn O. Mellgren  (1957)  Minerals Beneficiation - Adsorption of Ethyl Xanthate on Pyrite

MLA: A. M. Gaudin P. L. De Bruyn O. Mellgren Minerals Beneficiation - Adsorption of Ethyl Xanthate on Pyrite. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1957.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account