Minerals Beneficiation - Collection of Laboratory Dusts

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 284 KB
- Publication Date:
- Jan 1, 1955
Abstract
Although little information is available concerning small-scale equipment for dust collection in laboratories, it is possible to adapt standard equipment for laboratory use. Dust from laboratory processes may be collected by cyclone separators, filters, electrostatic separators, scrubbers, and settling chambers. IN recent years much attention has been given to recovery, treatment, and disposal of dusts discharged into the atmosphere from operations of industry. considerable data has been accumulated on both operation and design of dust-collector equipment for commercial installations. On the other hand, there is almost no published data on design and construction of small-scale equipment to handle dust problems that arise in the ore-dressing laboratory. Dust-collection equipment such as multiclones, single-cyclones, scrubbers, chemical and mechanical filters, settling chambers, and electrostatic separators has proved its efficiency for collecting dust in industry. In the laboratory, however, the engineer is faced with the problem of collecting small quantities of dust, inexpensively, without diverting the major effort from the metallurgical problem to the problem of collecting dust produced by the process. For most applications standard dust-collection equipment is too large for use in the laboratory; however, for control of dust in large working areas it is often possible to use a standard dust collector, such as an air filter, with branch ducts to eliminate a health hazard. For example, the well-furnished sample-preparation room containing small jaw crushers, rolls, and pulverizers, in addition to the riffles and screens necessary for preparation of samples, presents a perennial source of dust. The authors' experience has shown that a combination system consisting of overhead branch ducts to the individual equipment and floor ducts with grills, where applicable, connected to a central dust collector effectively removes dust generated in preparation of samples. Fig. 1 is a sketch of a downdraft dust-collector for table installation. Similar systems can be built with floor grids. For portable equipment such as laboratory vibrating screens this type of installation with a steel grill to support the heavy load is reasonably efficient. Overhead branch ducts to individual crushing and grinding equipment, although efficient, must be carefully controlled by dampers to prevent excess loss or a change in the composition of the sample. Change in sample composition can result from excess velocity, which causes selective removal of constituents of low specific gravity. Fig. 2' shows the theoretical effect of terminal velocity on spherical particles of different specific gravities in air and water under action of gravity. Fig. 3 shows the effect of air velocity on composition of CaCO, coal mixtures. Although the entrainment of dust particles in a moving air stream is the basic mechanism by which all dust-collection equipment functions, usually intake velocity of the dust-collection system must be controlled to prevent loss of part of the sample. As an example of what may happen when excess velocities are used, a mixture of 50 pct coal and 50 pct limestone was crushed to —10 mesh and fed to a pulverizer equipped with an overhead dust-collection system. Fig. 4 shows the overhead dust-collection equipment used in this test. The pulverizer was set to give a product 95 pct —100 mesh in two stages. Velocity of air passing over the lip of the pulverizer was measured with an anemometer. After grinding, the finished product was analyzed to show the amount of calcium carbonate present. Fig. 3 shows graphically the increase in calcium carbonate as velocity through the dust-collection duct was increased. These data show that at a velocity of 1 ft per sec little if any of the coal was entrained by the overhead draft. At the maximum velocity, about 6.5 ft per sec, approximately 7 pct more coal was entrained than calcium carbonate. From an operating standpoint, this problem can be remedied easily by dampering the line to control velocity. The lowest velocity commensurate with satisfactory dust control should be used to prevent excess loss and, in some cases, selective dust loss. Collection of Dust in Laboratory Processes As in industry, the engineer desires to collect efficiently the dust produced by processes being investigated on a laboratory scale. However, in the collection of laboratory dusts he is faced with two additional problems: 1—The volumes of gas and the quantity of dust that must be recovered are small when compared with the capacity of standard dust-collector equipment, which must be scaled down in design except for collection of dust from large pilot-plant operations. 2—In addition, because of the variety of problems studied in the process laboratory, the engineer cannot design today a dust collector that will meet the conditions imposed by the processes of tomorrow. Sometimes, therefore, he must compromise collection efficiency to minimize the cost of fabrication and the amount of time diverted from the metallurgical to the dust-control problem. For collection of dust from laboratory processes a cyclone separator, filters, electrostatic separators, scrubbers, and settling chambers can usually be adapted for small-scale operations. The following
Citation
APA:
(1955) Minerals Beneficiation - Collection of Laboratory DustsMLA: Minerals Beneficiation - Collection of Laboratory Dusts. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.