Minerals Beneficiation - Energy Transfer By Impact

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 611 KB
- Publication Date:
- Jan 1, 1957
Abstract
THE transfer of kinetic energy of translation into other forms of energy by impact is a fundamental process in most crushing and grinding operations. During and after the impact process the original source energy may be accounted for in any of the following possible forms: 1) Kinetic energy of translation of both the impacted and impacting objects. 2) Kinetic energy of vibration of the components of the impact system. 3) Potential energy as strain energy of the components of the system or in the form of residual stresses. 4) Heat generated by internal friction during plastic deformation or during damping of elastic waves. 5) New surface energy of fractured materials. At any instant during the impact process only the strain energy of the components of the system can contribute directly to the brittle fracture process. If fracture is the desired result, as in comminution, it would seem advantageous to choose or arrange the conditions of impact so that a maximum amount of the original kinetic energy could be converted to strain energy at some moment during a single impact. The present work deals with determination of these desirable conditions for a simple case of impact and application of the principles involved to general cases of impact. Experimental Method: Longitudinal impact of a rod with a fixed end was chosen as the impact system for investigation. The rod was mounted horizontally and the fixed end was formed by butting one end of the rod against a rigidly mounted steel anvil. The rod, of pyrex glass, was 10 in. long by 1 in. diam with both ends rounded to a 6 in. radius. The rounded ends permitted reproducible impacts on the free end of the rod and assured a symmetrical fixed end. Pyrex was selected as the rod material because of the marked elastic properties of such glass and the similarity of fracture between pyrex and many materials encountered in crushing and grinding operations. The frequency of natural longitudinal oscillation of the rod was 10 kc, and thus simple electronic equipment could be used for observation of strain changes occurring in the rod at this frequency. As shown in Fig. 1, impacts on the free end of the rod were obtained either by a pendulum device or by a spring-loaded gun. Relatively heavy hammers (100 to 600 g) of mild steel were used in the pendu- lum impacts, while fairly light projectiles (20 to 80 g) were fired from the spring-loaded gun. One of the main objects of the experimental work was to obtain the strain-time history of the rod as a function of the mass and kinetic energy of the impacting hammers. For this purpose a technique involving wire resistance strain gages and a recording oscilloscope was employed. Five gages were applied at equidistant sections along the rod, and by means of a switching arrangement the strain-time history at any section, and for any impact, could be obtained in the form of an oscillograph with a time base. The equation relating strain and voltage change across a strain gage through which a constant current is flowing is as follows: e = ?v/iRF [1] ? = strain, ?v = voltage change, i = gage current, R = gage resistance, and F = gage factor (from manufacturer's data — SRA type, Baldwin Lima Corp.). With the above equation an oscillograph depicting voltage change vs time on a single trace can be converted directly to a strain-time diagram if a calibration of the vertical response on the oscilloscope screen for specific voltage inputs is available. In the present case the calibration was obtained by photographing precisely known audio frequency voltages on the same oscillograph as that on which a voltage-time trace from a strain gage had been made. Synchronization of the beginning of the single trace with the beginning of the impact was accomplished by permitting contact of the impacting objects to close an electrical circuit from which a voltage pulse, sufficient to initiate the trace, was obtained. The struck end of the rod was lightly silvered for purposes of electrical conduction so that it would form one of the electrical contacts. Markers every 100 micro-seconds on the traces served for a time base calibration. Determinations of the kinetic energies of translation prior to impact were made in the case of the pendulum hammers by measuring the height of fall of the hammer and in the case of the projectiles by measuring the exit velocity from the gun barrel by means of an electrical circuit employing light sources, slits, and phototubes.' During the experimental work it became evident that the time of contact between the impacting object and the rod was an important variable in the impact process. Measurements of the times of contact were made, therefore, for every impact for which a strain-time record was obtained. The time of contact was determined by permitting the impacting components, when in contact, to act as a closed switch and discharge a condenser at relatively constant voltage. The discharge was observed and photographed with a time base on the oscilloscope screen.
Citation
APA:
(1957) Minerals Beneficiation - Energy Transfer By ImpactMLA: Minerals Beneficiation - Energy Transfer By Impact. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1957.