Minerals Beneficiation - Evaluation of Sinter Testing

The American Institute of Mining, Metallurgical, and Petroleum Engineers
E. H. Kinelski H. A. Morrissey R. E. Powers
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
480 KB
Publication Date:
Jan 1, 1955

Abstract

A group of 17 American blast-furnace sinters, an American open-hearth sinter, an American iron ore, and a Swedish sinter were used to evaluate testing methods adapted to appraise sinter properties. Statistical calculations were performed on the data to determine correlation coefficients for several sets of sinter properties. Properties of strength and dusting were related to total porosity, slag ratio, and total slag. Reducibility was related to the degree of oxidation of the sinters. THIS report to the American iron and steel industry marks the completion of a 1949 survey of blast-furnace sinter practice sponsored by the Subcommittee on Agglomeration of Fines of the American Iron & Steel Institute. The use of sinter in blast furnaces, sinter properties, raw materials, and sinter plant operation have been reported recently.1,2 After preliminary research and study," test procedures were adapted to appraise the physical and chemical properties of sinter to determine what constitutes a good sinter. During the 1949 to 1950 plant survey each plant submitted a 400-lb grab sample to research personnel at Mellon Institute, Pittsburgh, Pa. A 400-lb sample was also submitted from Sweden. In addition, 2 tons of group 3 fines iron ore were obtained from a Pittsburgh steel plant. The following tests were performed on the iron ore sample and on the 19 sinter samples: chemical analysis; impact test for strength and dusting; reducibility test; surface area measurements, B.E.T. nitrogen adsorption method; S.K. porosity test; Davis tube magnetic analysis; X-ray diffraction analysis for magnetite and hematite; and microstructure. Results of these evaluations are discussed in this paper and supply a critical look at testing procedures used to determine sinter quality. Sinter Tests and Results Each 400-lb grab sample of sinter was secured at a time when it was believed to represent normal production practice at each plant. It was not possible to use the same sampling procedures throughout the survey; consequently samples were taken from blast-furnace bins, cooling tables, and railroad cars. These were very useful for evaluation of test methods, since they were obtained from plants with widely divergent operations. With the exception of Swedish sinter and sinter sample N, which were produced on the Greenawalt type of pans, all survey sinters were produced on the Dwight-Lloyd type of sintering machines. Sinters submitted for test were prepared in identical manner by crushing in a roll crusher (set at 1 in.), mixing, and quartering. To secure specific size fractions for tests, one quarter of the sample was crushed in a jaw crusher and hammer mill to obtain a —10 mesh size. The remainder was screened to obtain specific size fractions. The group 3 fines iron ore was dried and screened and samples were taken from selected screen sizes to be used for various tests. Prior to testing, each ore sample except the —100 mesh fraction was washed with water to remove all fine material and was then dried. This iron ore, a hematitic ore from the Lake Superior region, was used as a base line for comparing results of tests on sinters. The iron ore did not lend itself to impact testing, since it was compacted rather than crushed in the test, and no impact tests are reported. However, the iron ore was subjected to all remaining physical tests to be described. Chemical Analysis: Table I presents chemical analyses performed on the survey sinter samples. Included in this table are data obtained from determination of FeO and the slag relationships: CaO + MgO and total slag (CaO + MgO + SiO, SiO2 + Al2o3 + TiO2). The percentage of FeO was used as an indication of the percentage of magnetite in the sinter. It was believed that slag relationships could be correlated with sinter properties. During initial determination of FeO great disagreement arose among various laboratories, both as to the results and the methods of determining values. Table I lists the values of FeO resulting from the U. S. Steel Corp. method of chemical analysis,' which reports the total FeO soluble in hydrochloric and hydrofluoric acids (metallic iron not removed) with dry ice used to produce the protective atmosphere during digestion. Use of dry ice was a modification required to obtain reproducible results. In this method, the iron silicates and metallic iron are believed to go into solution and are therefore reported as FeO. This is important, for in the study of the microstructure of sinters, glassy constituents suspected of containing FeO as well as crystallized phases of undetermined identity which may also contain FeO have been observed. Strength Test by Impact: In evaluating sinter quality, one of the properties stressed most by blastfurnace operators is strength. This strength may be described as the resistance to breakage during handling of sinter between the sinter plant and the blast-furnace bins. It is also the strength necessary to withstand the burden in the blast-furnace. After
Citation

APA: E. H. Kinelski H. A. Morrissey R. E. Powers  (1955)  Minerals Beneficiation - Evaluation of Sinter Testing

MLA: E. H. Kinelski H. A. Morrissey R. E. Powers Minerals Beneficiation - Evaluation of Sinter Testing. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account