Minerals Beneficiation - Experiences with a Density Recording and Controlling Instrument for Heavy-media Separation Units

The American Institute of Mining, Metallurgical, and Petroleum Engineers
James J. Bean
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
371 KB
Publication Date:
Jan 1, 1951

Abstract

HE task of measuring the specific gravity of the -*- operating medium in a heavy-media separation system has never presented a particularly difficult problem because the medium is fairly stable and the overflow of the separatory vessel, as well as its underflow, can be sampled easily and accurately and the specific gravity of the suspension determined easily by weighing a known volume. However, while this method is simple and accurate it does require the operator to take the sample by hand and to weigh it and there is considerable temptation to avoid the periodic sampling if everything seems to be going well, or if something is occupying the attention of the operator. Furthermore all operators do not sample in exactly the same manner and considerable practice is required for two operators to be able to "check" each other to the last few hundredths, particularly if the sample is cut underneath the drainage screen where location of the point of sampling and load on the screens tends to influence the determination. While none of the above presents much of a problem, we have all recognized that some mechanical method of continuous measurement and recording would be advantageous since the operator would merely have to glance at the meter to check the gravity and to have an indication of the trend of any changes. Also if the instrument were of the recording type, a permanent record would be available for the guidance of the superintendent. The Eagle-Picher Mining and Smelting Co. was the first heavy-media user to actually install such a recording meter. In 1946 they installed in their Central Mill at Cardin, Okla., a specific gravity recorder manufactured by the Bristol Co. of Water-bury, Conn. R. A. Barnes, of the Bristol Co., working with E. H. Crabtree, Jr. and Elmer Isern, of Eagle-Picher, made the application and worked out the problems of sampling and measuring. Their attempts to measure the specific gravity of the medium in the cone itself were not entirely successful and they resorted to an outside sample tube for actually making the determination. Because of the particular flowsheet used, it was possible to tap off from the medium return pipeline a stream of medium and divert it into the sampling tube, which was provided with a constant level overflow and a spigot underflow, and into which the bubbler tubes dipped. The Eagle-Picher installation was successful and its possibilities were recognized by the Mineral Dressing Laboratory of the American Cyanamid Co. It was decided to install a similar unit in the heavy-media pilot plant to investigate further its possibilities. Chief among these was the continuous record which it was felt would be proof of the steadiness of the gravity in a heavy-media cone, something which is not always appreciated by POtential users. Because the heavy-media pilot plant is required to operate at a wide range of specific gravities, it was realized that the unit would have to record all gravities from 1.25 to 3.50, and do it to the nearest 0.01. It would not be necessary to record all of this wide range on a single chart and the method selected was to have 4 bands, each band range overlapping the other a small amount and calibrated so that with standard charts one division would represent 0.01 sp gr. A shift from one band to another could be arranged without alteration of the instrument itself, being accomplished by a simple change in the bubble-tube lengths, as described later. Accordingly, a recording type instrument was purchased and installed. Because there were some advantages in doing so, the first installation attempted to measure the gravity of the cone proper by placing the bubble tubes in the cone. This was not at all satisfactory and the second scheme utilized a fixed vertical screen at the surface of the cone, and an external sample-tube arrangement. We were particularly anxious to make this work as we felt it would be advantageous to measure the top level of medium where the separation was actually being made, but we were doomed to disappointment because it was impossible to keep the screen clean of float. Since the top gravity of the cone is the most convenient place to sample for control, a launder about 2 in. wide was installed longitudinally beneath the
Citation

APA: James J. Bean  (1951)  Minerals Beneficiation - Experiences with a Density Recording and Controlling Instrument for Heavy-media Separation Units

MLA: James J. Bean Minerals Beneficiation - Experiences with a Density Recording and Controlling Instrument for Heavy-media Separation Units. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1951.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account