Minerals Beneficiation - Fine Grinding at Supercritical Speeds - Discussion - Correction

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 1
- File Size:
- 322 KB
- Publication Date:
- Jan 1, 1959
Abstract
John F. Myers (Consulting Engineer, Greenwich, Corm.)—Since the art of comminution has lain practically dormant for many years, it is very interesting that R. T. Hukki approaches the subject with a new concept. One is reminded of the research carried on by A. W. Fahrenwald of Moscow, Idaho, a few years ago. Fahrenwald mounted a steel bowl on a vertical shaft. The balls and ore placed in the bowl were rotated at fast speeds, thus simulating the supercritical speeds used by Hukki. The rolling action of the balls against the smooth shell liner has pretty much the same effect. The action is horizontal in one case and vertical in the other. Both researchers report good grinding activity. It is also constructive that such able investigators give to the students of comminution their interpretation of their laboratory results in terms of large-scale operation. History shows that it takes a lot of time for such radically new ideas to be absorbed by the industry. Typical of this is the present-day activity of cyclone classification in primary grinding circuits. The idea of cyclone classification has been kicking around for 30 or 40 years. Certainly we all suspect that the ponderous grinding mills of today, and their accessory apparatus, large buildings, etc., will ultimately give way to small fast units, just as this has occurred in other industries over the past 50 years. At the moment there is no evidence that ball and liner wear is prohibitively high. In fact, at the time Fahrenwald was demonstrating his high-speed horizontal machine at the meeting of the American Mining Congress, several years ago, he assured this writer that the balls retained their shape much longer than they do in conventional tumbling mills. Rods and balls that slide (as some operators in uranium plants are experiencing) get flat. Apparently the balls have a rolling action. Mr. Hukki's references to the processing capacity of the Tennessee Copper Co. mills is adequate. Those studying this subject will be greatly interested in the paper presented by Richard Smith of the Cleveland-Cliffs Iron Co. at the annual meeting of the Canadian Institute of Mining and Metallurgy in Vancouver April 24, 1958. This paper will be published during the latter part of 1958 in the Canadian Institute of Mining and Metallurgy Bulletin. Hukki's pioneering spirit is to be commended. R. T. Hukki (author's reply)—It has been heartening to read the objective discussion by J. F. Myers. The sincerity of his opinions is further strengthened by the fact that the article he has discussed contradicts in a major way the parallel achievements of his life work. Myers is right in his opinion that in general it takes a long time before new ideas are accepted by the industry. On the other hand, revolutions usually take place at supercritical speeds. There are many indications at present that both the unit operation of grinding and the related subject of size control are now just about ripe for a revolution. In grinding, brute force must ultimately give way to science. Rapid progress can be anticipated in the following fields: 1) Autogenous fine grinding at supercritical speeds will be the first advance and the one that will gain recognition most easily on industrial scale. At this moment, little Finland appears to be leading the world. Crocker recently made a statement that in nine cases out of ten, your own ore can be used as grinding medium more effectively and far more economically than steel balls. This is true. The present author would like to introduce a supplementary idea: In eight cases out of the nine cited above, it can be done at the highest overall efficiency in the supercritical speed range. Fine grinding must be based on attrition, not impact. The path of attrition may be vertical, horizontal, even inclined. 2) In coarse grinding, the conventional use of rods is sound practice. However, even the rods can be replaced by autogenous chunks large enough to offer the same impact momentum as the rods. To obtain the momentum, the chunks must be provided with a free fall through a sufficient height in horizontal mills operated at supercritical speeds. Coarse grinding must be based on impact. Detailed analysis of the subject may be found in a paper entitled "All-autogenous Grinding at Supercritical Speeds" in Mine and Quarry Engineering, July 1958. 3) All conventional methods of classification, including wet and dry cyclones, are inefficient in sharpness of separation. Continuous return of huge tonnages of finished material to the grinding unit with the circulating load is senseless practice. In the near future the present methods will be either replaced or supplemented by precision sizing. These three fields are also the ones to which J. F. Myers has so admirably contributed in the past. Fine Grinding at Supercritical Speeds. By R. T. Hukki (Mining EnGineERInG, May 1958). Eq. 9, page 588, should be as follows: T , c, (a — 6') n D Ltph On page 584 of the article the captions for Figs. 4 and 5 have been placed under the wrong illustrations and should be interchanged.
Citation
APA:
(1959) Minerals Beneficiation - Fine Grinding at Supercritical Speeds - Discussion - CorrectionMLA: Minerals Beneficiation - Fine Grinding at Supercritical Speeds - Discussion - Correction. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1959.