Minerals Beneficiation - Flotation of Quartz by Cationic Collectors

The American Institute of Mining, Metallurgical, and Petroleum Engineers
P. L. De Bruyn
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
535 KB
Publication Date:
Jan 1, 1956

Abstract

The adsorption density of dodecylammonium ions at the quartz-solution interface has been Theadsorptiondensitydetermined as a function of collector concentration and pH. A ten thoushasbeenandfold range of amine salt concentration was covered at neutral pH. Experimental results show that over a thousandfold concentration range at neutral pH, the adsorption density (I) is proportional to the square root of collector concentration. Except at high concentrations, I increases with increases with increasing pH, but in general this effect is surprisingly small. . , . . A critical pH curve has been established for the flotation of quartz with dodecylammonium acetate. The conditions along the flotation curve are correlated with the adsorption measurements. THE behavior of collectors at the mineral-solution interfaces is usually explained in terms of an ionic adsorption process. Through the distribution of collector ions between the solid surface and the- co-existing solution phase the mineral is believed to acquire a water-repellent surface coating. Quantitative adsorption studies have been made on simple flotation systems1-4 only within the last few years. Such investigations were made possible by the adoption of the radiotracer method of analysis. As a consequence of these studies a new parameter has been added to aid the understanding of the flotation process. The research investigation to be discussed in this paper was undertaken to obtain a better understanding of the behavior of a cationic-type collector. This objective was approached through the determination of the distribution of dodecylammonium acetate between the quartz-solution interface and the solution as a function of the collector salt concentration and pH. To bring this investigation to focus on the more practical aspect of flotation research, an attempt was also made to correlate the adsorption results with actual flotation tests. Quartz: A —100 mesh ground crystalline quartz was infrasized; the products of the third and fourth cones were mixed together and reserved for experimental purposes. This stock material was cleaned by leaching in boiling concentrated HC1. After leaching the quartz was rinsed with distilled water until the filtrate showed no trace of chloride ian. It was then washed several times and dried. The qwrtz had a specific surface of 1400 cma per g as deterhined by the krypton gas adsorption method. Collector: The distribution of dodecylammonium acetate between the quartz surface and the solution phase was determined by the radiotracer method of analysis with carbon 14 as the tracer element. The radioactive amine salt with C" synthesized into the hydrocarbon chain5 was supplied by Armour and Co. The tracer element was located adjacent to the polar group. The radioactive salt as received had a specific activity of about 0.14 mc per g. When desired, dilution of this activity was effected by addition of non-radioactive dodecylammonium acetate also supplied by Armour and Co. ........ All other inorganic reagents used in this research were of reagent grade. Conductivity water was used for making up all solutions. Adsorption Tests: Two different experimental methods were used. In the first, to be designated as the agitation method, a weighed amount of quartz and a measured volume of amine salt solution were agitated in a 100-ml or 50-ml glass-stoppered pyrex graduated cylinder. The cylinder was filled with solution up to the stopper, since erratic results were obtained when an air space was left over the suspension. Time of agitation varied from 1 to 2 hr. Preliminary tests at different agitation times showed that the amount adsorbed remained constant for all agitation times exceeding 1/2 hr. After this conditioning period, the solids were separated from the solution by filtration through a Buechner fritted-disk funnel. The solution was re-circulated 10 times or more to allow the fused silica disk to come to equilibrium with it. Determinations of the amount of amine adsorbed on the frit itself indicated that this amount was less than 10 pct by weight of the amine acetate abstracted by 10 g of quartz. The funnel with quartz covered by a thin layer of solution was then centrifuged for approximately 5 min, at which time the moisture content of the solids was reduced to about 5 pct by weight. The wet quartz was blown into a tared beaker, re-weighed and allowed to dry at room temperature. A final weighing was then made to determine the moisture content. The second experimental method, similar to the procedure adopted by Gaudinand Bloecher,' will be referred to as the column method. Two liters of solution were passed through a bed of quartz contained in a Buechner funnel attached to a pyrex separatory funnel by means of a ball and socket joint. Preliminary tests showed that increasing the volume of solution above 2 liters does not give a measurable increase in adsorption. From 4 to 4 1/2 hr were required for 2 liters of solution to pass through the column. The moisture content of the quartz was again reduced to a minimum by centrifuging. A slightly modified column apparatus was used for experimenting with alkaline amine solutions. The same basic unit was used, but the underflow from the Buechner funnel was again fed into a Separafory
Citation

APA: P. L. De Bruyn  (1956)  Minerals Beneficiation - Flotation of Quartz by Cationic Collectors

MLA: P. L. De Bruyn Minerals Beneficiation - Flotation of Quartz by Cationic Collectors. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account