Minerals Beneficiation - Operating Behavior of Liquid-Solid Cyclones

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 418 KB
- Publication Date:
- Jan 1, 1954
Abstract
The operating behavior of liquid-solid cyclones is outlined, together with the nature and range of the process results obtainable, to serve as a background for engineers wishing to consider application of this new process tool. BY now most engineers are familiar with the liquid-solid or Dutch State Mines cyclone. However, it should be helpful to know exactly what it is that the equipment does and what its limits are. Without going into cyclone theory, this paper will describe the operating characteristics of Dutch State Mines cyclones. These are manufactured under license in this country and sold under the trade-marked name of DorrClone. The physical construction of the liquid-solid cyclone has been covered in many papers,'-' the DorrClone in particular being described in some detail by Weems. Fig. 1 shows the unit in cross-section. The feed enters at C. The coarse, heavy particles are thrown centrifugally to the periphery and make their way down the wall to the apex where their rate of discharge as underflow is controlled by an adjustable rubber apex valve. As the apex diameter is decreased the solids build up behind the valve, producing a denser underflow. Meanwhile the fine particles are swept into the upward flowing vortex stream which exits as overflow through the vortex finder, F. Flexibility to produce the specific result desired in a particular process is achieved by providing means for varying the areas of the entrance, vortex discharge, and apex discharge. The entrance area may be varied by insertion of special shims. Vortex discharge area may be changed by use of different-sized vortex finders which are interchangeable. Similarly, the different sizes of apex valves are interchangeable and in addition each apex valve is variable down to about 60 pct of its maximum diameter. A most significant primary distinction to make is that although liquid-solid cyclones have been sometimes called thickeners, they actually are classifiers, and very potent ones. They are almost never thickeners in the special sense that many metallurgical engineers understand the term. There would be no profit in quibbling over the definition of a word, but when the application of cyclones is considered, it will help to understand the difference be- tween two mechanisms, one of which will be called classification, and the other thickening. In what is called thickening the fine solid particles present in the feed hold together by surface attraction during the sedimentation process. The loose network of particles thus held together constrains all particles to settle at approximately the same rate, the larger ones dragging the smaller ones down. As a result, pulp settles with a sharp line of demarcation between solids and a relatively clear supernatant liquid. Essentially all the solids, regardless of their fineness, pass into the thickened underflow, and a clear overflow is separated. In classification, on the other hand, the interparti-cle forces are relatively insignificant as compared to the settling force on the individual particles, and are insufficient to prevent independent movement of the particles. The coarsest, heaviest particles settle most rapidly through the pulp, passing more slowly settling fines. Particles coarser than the mesh-of-separation essentially all settle into the underflow, but if the feed contains any particles finer than the mesh of separation, at least part of them will appear in the overflow. A clear supernatant or overflow can be obtained only if there are no undersize particles present in the feed. Thus it will be seen that classification is impossible under ideal thickening conditions. The finer particles are pulled down at essentially the same rate as coarser particles, and there is no separation on the basis of particle size. The surface attraction holding the particles together in a thickener is usually feeble. Whenever the sedimentation force on any particle is strong with respect to the interparticle forces, that particle can pass through the tenuous structure and settle independently. There are at least four ways of making the sedimentation force strong, with respect to the interparticle forces, and obtaining classification. First, and most obvious, the particles may be large and heavy. Thus coarse sands settle out in a beaker or Dorr thickener ahead of the rest of the thickening solids. Second, the interparticle forces may be altered by physicochemical means; i.e., it is often necessary to add dispersing agents to destroy the interparticle forces and permit classification to take place. Third, the interparticle forces may be reduced by dilution of pulp. It is well known that to obtain the most efficient separation of
Citation
APA:
(1954) Minerals Beneficiation - Operating Behavior of Liquid-Solid CyclonesMLA: Minerals Beneficiation - Operating Behavior of Liquid-Solid Cyclones. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.