Minerals Beneficiation - Relative Effectiveness of Sodium Silicates of Different Silica-Soda Ratios as Gangue Depressants in Non- metallic Flotation

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 990 KB
- Publication Date:
- Jan 1, 1959
Abstract
PERHAPS the most widely used dispersants or gangue depressants in nonmetallic flotation are sodium silicates, which vary in silica-to-soda ratio from 1 to 3.75. Typical manufactured silicates in order of decreasing solubility and increasing amounts of silica are Metso, silica-to-soda ratio of 1.00; D, 2.00; RU, 2.40; K, 2.90; N, 3.22; and S-35, 3.75.* References in flotation literature1,2 to the use of sodium silicates are often weak because they fail to mention the type of silicate used. Metso and silicate N have occasionally been mentioned, but when the type of silicate is not mentioned, it is usually assumed to be N, the cheapest of the soluble silicates and the one recommended by sodium silicate manufacturers as a flotation agent. In the All is-Chalmers Research Laboratories a systematic study was made of the effect of different alkali-silica ratios on the concentration by flotation of two scheelite ores. One of these was a high grade ore from the Sang Dong mine in Korea. The effect of such factors as pH; addition agents; and conditioning time, temperature, and pulp density on the flotation efficiency of this ore have been described previously. The other ore was a low grade ore from Getchell Mines Inc., Nevada. The mineralogy and techniques of concentrating this ore have been described by Kunze. Hereafter these ores will be referred to as the Korean and Nevada ores. Experiments were made with both to determine the effect of three factors—-type of silicate, concentration of silicate, and pH of the pulp—on recovery and grade of tungsten in a rougher concentrate. Average WO, content of the Korean ore was 1.50 pct and of the Nevada ore 0.27 pct. The predominant tungsten mineral in both ores was scheelite, which was accompanied by a small amount of powellite. The powellite and scheelite were finely disseminated through both ores and required a —200 mesh grind for liberation. Major gangue minerals in the Korean ore, in decreasing order of abundance, were amphi-boles, quartz, biotite, garnet, fluorite, and calcite. Bulk sulfides composed about 3 pct of the total weight. Gangue in the Nevada ore, in descending order of abundance, was garnet, alpha quartz, calcite, phlogopite, wollastonite, and amphiboles. Sulfide minerals were 3 to 4 pct of total weight. Batch flotation experiments were made with 500-g samples of ore, each sample wet-ground to 90 pct passing 200 mesh. The finely ground ore was floated in a Fagergren batch cell at 25 pct solids. The natural pH of the Nevada ore was 8.9 and of the Korean ore, 8.5. The D, RU, K, N, and S-35 sodium silicates were obtained in colloidal dispersions with varying amounts of water. The most alkaline, Metso, was in dry powdered form. For convenience in addition, 5 pct solutions by weight were prepared from each of the silicates, on the basis of dry sodium silicate dissolved in the correct amount of distilled water. Chemical analyses of the various silicates are given in Table I, together with the pH of the 5 pct solutions. A preliminary bulk sulfide float was made with secondary butyl xanthate as the collector and pine oil as the frother. The WO] analysis of the sulfide concentrate was nearly 1 pct for the Korean ore and about 0.1 pct for the Nevada ore. The tungsten contained in the sulfide concentrate constituted about 3 pct of the total tungsten in each ore. No effort was made to recover these tungsten values. The scheelite was floated with oleic acid. Adjustments in pH were made with sulfuric acid or sodium carbonate. A 1 pct solution of 85 pct Aerosol OT was sprayed on the froth and sides of the cell during the scheelite float to aid in dispersing the minerals and to decrease the entrapment of gangue particles. Six tests were planned for each of the six types of silicate in which concentrations of 1, 2, and 4 1b of silicate per ton of dry ore were investigated at both 6.5 and 10 pH. All tests were made at room temperature. The performance of each silicate was judged from the grade and recovery of WO, in the scheelite rougher concentrate. Tungsten recovery was calculated on the basis of the scheelite remaining in the ore after the preliminary sulfide float. Testing of each silicate at three levels of concentration and two levels of pH required 36 tests with each scheelite ore. Variance analyses were performed on the concentrate grades and recoveries to determine whether or not the type of sodium silicate, the concentration of sodium silicate, or the pH significantly affected recovery or grade. Results Concentrate Grade: A variance analysis of the concentrate grades for the Korean ore showed that concentration of the silicate and pH of the ore pulp were major factors in producing a high grade concentrate. Also, the silica- to-so da ratio was important as an interaction with pH. The concentrate grade vs silica-to-soda ratio is plotted in Fig. 1. The curves show that the concentrate grade improved with an increase in concentration of sodium silicate and also
Citation
APA:
(1959) Minerals Beneficiation - Relative Effectiveness of Sodium Silicates of Different Silica-Soda Ratios as Gangue Depressants in Non- metallic FlotationMLA: Minerals Beneficiation - Relative Effectiveness of Sodium Silicates of Different Silica-Soda Ratios as Gangue Depressants in Non- metallic Flotation. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1959.