Minerals Beneficiation - The Flotation of Copper Silicate from Silica (Correction, p 330)

The American Institute of Mining, Metallurgical, and Petroleum Engineers
R. W. Ludt C. C. DeWitt
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
240 KB
Publication Date:
Jan 1, 1950

Abstract

The use of froth flotation for the separation of minerals has become one of the most important of ore dressing processes. Its particular adaptability to the enrichment of low grade ores has made the process an important factor in the national economy. The methods have been extended to the recovery of a great number of minerals. Among the few minerals which have resisted efforts toward industrial flotation is chrysocolla, a hydrated partly colloidal copper silicate. Chrysocolla, being a product of natural oxidation, has been found to occur in small quantities with many ores which are recovered by flotation methods. In present practice, these small quantities of copper silicate pass off with the tailings and are lost. The advantages to be gained by a satisfactory process for the recovery of chrysocolla is apparent. Any application of principles which points a way toward the satisfactory industrial flotation process for copper silicate would be of advantage. This paper presents an attack on this problem. Two methods for the recovery of chrysocolla have been developed by the United States Bureau of Mines.1,2 They have been successful on a laboratory scale but have been seriously restricted in industrial application by critical requirements in the procedure. In one of the Bureau of Mines methods,' the ore is activated with sodium or hydrogen sulphide in an aqueous solution at a pH of 4. Amy1 xanthate is then used as a collector with pine oil as a frother in the flotation process. An excess of sulphide acts as a depressant and the state of optimum conditions is difficult to control industrially. In the second Bureau of Mines method,2 soap is used as the collector at a pH of between 8 and 9. The diffi- culties with this process are that soap is not a specific collector, that heavy metal or alkaline earth ions cause the formation of insoluble soaps, and that a more acid solution causes the formation of a free acid which does not act as a collector for chrysocolla. The problem of recovering chrysocolla by flotation involves the selection of a suitable collector. The collector molecule must be composed of an active polar group that has an attraction for chrysocolla, and of a hydrocarbon chain. Certain dyes have been shown to have an attraction for certain minerals. Suida3 found that hydrated silicates are colored by basic dyes. Dittler4 showed that chrysocolla, among other colloidal minerals of acid reaction, preferentially takes up such basic dyes as fuchsin B, methylene blue, and methyl green. Endell5 gave information to show that the colloidal material in clay may be determined by its selective adsorption of fuchsin. A simple experiment, likewise, illustrates the difference in the adsorptive power of chrysocolla and of silica for the basic triphenyl methane dyes. When a mixture of chrysocolla and silica is immersed in a very dilute dye solution, less than 5 ppm, the chryso-colla is rapidly dyed and the silica is dyed more slowly. The difference is substantial but one of degree. Dean2 showed that the dyes, crystal violet and toluidine blue, are taken up by quartz in an adsorption type process. The difference in the adsorptive power, however, offers the means by which a new collector may act. To form such a collector, a hydrocarbon chain must be attached to the dye molecule. This involves a process of organic synthesis. Butyl, hexyl, and octyl hydrocarbon chains were selected for substitution in the malachite green molecule. For the purpose of identification, the alkyl-substituted dyes formed are called: butyl-malachite green; hexyl- malachite green; and octyl-malachite green. An outline of the procedure for their synthesis is given in the appendix. It is generally recognized in the preparation of this type of dye that the chemical structure of some of the dye molecules varies. However, a uniform formula is attributed to the dye. Such a procedure has been followed in specifying the structure of these alkyl-substi-tuted malachite green dyes. The structure is given on the basis of their properties as an homologous series of dyes, on their method of preparation, and on the purity of intermediates used. Structure of substituted alkyl malachite green is: C6H4 N(CH3)2 p-R C6H4 CH C6H4 N(CH)2 Procedure The flotation cell is a Bureau of Mines 100-g, batch unit provided with an air inlet at the bottom above which is a variable speed agitator. The agi-
Citation

APA: R. W. Ludt C. C. DeWitt  (1950)  Minerals Beneficiation - The Flotation of Copper Silicate from Silica (Correction, p 330)

MLA: R. W. Ludt C. C. DeWitt Minerals Beneficiation - The Flotation of Copper Silicate from Silica (Correction, p 330). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account