Minerals Beneficiation - Thickening-Art or Science?

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 255 KB
- Publication Date:
- Jan 1, 1950
Abstract
Prior to 1916, thickening was an art, and any accurate decision as to what size of machine to install to handle a given tonnage of a specific ore must have been one of those intuitive conclusions, based on both intimate and extensive acquaintance with thick-ners and ore pulps. Then in 1916 "knowledge of acquaintance," became "knowledge about" with the publication of the Coe and Clevenger paper.' The unit operation of thickening had graduated to the status of an engineering science. The fundamental similitude relationships for the two major phases of the operation were defined so clearly that batch tests on models as small as liter cylinders could serve to specify protypes as large as 325 ft in diameter. It is quite apparent from reading the literature that Coe and Clevenger's contribution is not generally appreciated. In so far as the basic engineering relationships are concerned, the only real advance which has occurred in the 30 odd years which have elapsed since the Coe and Clevenger paper is the recognition of the effect of the rakes on the thickening process. Bull and Darby2 noted this in 1926, and the extensive use of the "gluten type" thickener, in which the effect is magni-fied, bears witness to its importance. Comings3 further verified this effect of the rakes. As a matter of fact, a number of papers show an apparent regression from the Coe paper in that the area determinations are made on the basis of a single test from One concentration of solids. Coe and Clevenger amply demonstrated that this is unsafe, since the controlling zone may be one other than that of the feed dilution. Comings3 neatly demonstrated this without apparently realizing it. Of course there have been significant advances in the application of the operation to industry. Open tray thickeners were introduced to save area; balanced tray thickeners, washing thickeners, and multifeed clarifiers were developed with all of their special hydraulic and mechanical problems. Combinations of all kinds have been introduced, such as combination agitators and thickeners, combination flocculators and clarifiers, combination thickeners and filters. With the establishment of the operation on a firm engineering foundation, installation was facilitated and expansion proceeded. There are still problems, of course, functional as well as mechanical. Sometimes the moisture in the underflow obtained in practice is not as low as is expected on the basis of the test data. Sometimes the underflow is so "thick " that its discharge and subsequent handling requires special attention. Island formation plagues some operators. The use of the thickener as a surge basin and blending tank in the cement industry poses unusual problems. Design of rakes and the drive mechanism must be continually im-proved. Corrosion problems must he overcome. Power requirements for raking the settled solids occasionally is the controlling factor as it was in the case of the all American Canal desilting installation. Other similitude relationships and design problems come into the picture when we enter the field of clarification or nonline settlement. We have an energy dissipation problem in introducing the feed and any models must satisfy the Froude model relationships. Autoflocculation requires detention which involves the same similitude laws that we encounter in the compression zone. Approach to an Exact Science The next step beyond having control of the similitude relationships is to understand the why of these relationships right back up the line to first principles. The ultimate might be that, if given the mineralogical composition of the solids and their size distribution together with an analysis of the suspending liquid, we could calculate the entire thickening behavior of the system. Then we could say we had reduced the operation to an exact science. True it might be more trouble getting this basic analytical data than to make our empirical determinations for area and volume, and we would need an ENIAC to calculate the results, but that does not detract from the desirability of such understanding. Considerable work has been done by the chemical engineers with this end in view. Comings,3 Egolf,4 Work,5 Kam-mermeyer,6 Steinour,7 and others have studied the problem. The writer has no final answer to the thickening story but would like to propose a picture of the mechanics of the two phases of thickening which has been found useful in understanding the subject and which leads to some convenient relationship in treating the compression step and arriving at the compression depth.
Citation
APA:
(1950) Minerals Beneficiation - Thickening-Art or Science?MLA: Minerals Beneficiation - Thickening-Art or Science?. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.