Mining - Change to Rotary Blasthole Drilling in Limestone Increases Footage, Cuts Time, Saves Manpower

The American Institute of Mining, Metallurgical, and Petroleum Engineers
D. T. Van Zandt
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
352 KB
Publication Date:
Jan 1, 1955

Abstract

IN the late 1920's rotary drills began to replace the churn drills in the petroleum industry, but until the middle 1940's the churn drill was the only widely accepted means of drilling large-diameter blastholes for quarry operations. The Calcite plant of the Michigan Limestone Div., U. S. Steel Corp., was one of the first to experiment with rotary drills for quarry blasthole drilling, and the first to employ compressed air on a fully rotary rig to cool the bit and raise the cuttings to the collar of the blasthole. The Calcite plant operates a limestone quarry near Rogers City, Mich., in the northern part of the lower Michigan peninsula. The formation quarried, a portion of the middle Devonian series, is the Dundee limestone, which is uniform, seldom massive, and characterized by definite bedding planes. The dip is southeast, 40 ft to the mile. Quarry faces vary from 20 to 116 ft in height. Vertical blastholes are used entirely, from three to five rows of holes being drilled parallel to the working face, spaced 18 ft apart with 18-ft burden and drilled 6 to 8 ft below shovel grade. Quarry operations coincide with the navigation season on the Great Lakes, as the bulk of the stone is transported by lake carrier. The normal operating season runs from April to December, the remaining time being devoted to stripping operations and plant and equipment maintenance. In the followirig discussion drilling rates mentioned refer to overall drilling time and include all operations such as moving from hole to hole, penetration and extraction of tools, and routine maintenance. Time consumed by such factors as power delays and major machine repair is not included in drilling time unless otherwise stated. Figures cover only operations at this one plant in the formation mentioned. Needless to say, a very different set of figures could be obtained in a different formation. However, the comparison of footage obtained with churn drills and rotary rigs in this particular formation has been used as an indication of what might be the expected performance of rotary rigs in other formations. Prior to 1950 the bulk of the blasthole drilling at the Calcite plant was done by electrically powered churn drills. Both crawler and wheel-mounted rigs were used. These machines, which mounted a 22-ft drill stem of 4½ in. diam and a spudding type of bit 2 to 4 ft long, drilled a hole of 5 ?-in. diam. Average drilling rate of these rigs in the Rogers City formation was 8 % ft per hr. In 1946 one of the first rotary blasthole drills offered to the quarry industry was put into use on an experimental basis. This machine, known as the Sullivan Model 56 blasthole drill, Fig. 1, was on 16-in. crawler pads and electrically powered at 440 v. The drill bit, a Hughes Tri-Cone roller bit of 5?-in. diam, Type OSC, was threaded into the end of the 4-in. square hollow drill rod or stem. These drill rods were 20 ft long with female threads on one end and male on the other to allow for addition of the desired number of rods for drilling holes of various depth. Rods were handled by a single drum hoist geared to the main drive motor and racked by a 30-ft derrick or mast when not in use. The cable from the hoist drum fed through a crown block on the top of the derrick back to the water swivel mounted in the top end of the drill stem in use. This cable remained attached during drilling operations and was used to hoist the tool string from the hole. Down pressure was applied to the tool string by means of a pair of 4-in. diam hydraulic cylinders acting on the drill chuck holding the drill rod. The first chuck consisted of flat jaws which gripped the flat sides of the stem. These jaws were controlled by set screws forcing them into contact with the drill stem. As these set screws had to be loosened and tightened by hand with each stroke of the hydraulic feed cylinders, there was great delay. For this reason the semi-automatic chuck was developed which automatically gripped the stem on the downward stroke but released for retraction of the hydraulic feed cylinders. Rotation was imparted to the tool string by a rotary table acting on the chuck and geared to the main drive motor through a separate gear train and clutch. A positive displacement water pump, mounted on the drill, fed water through a system of pipes and hose into the water swivel mounted on the top of the drill rod and through the rod and bit, washing the drill cuttings to the collar of the hole. Where water was scarce, provision was made to settle out the cuttings coming from the collar of the hole and re-use the water. Where water was abundant the stream coming from the hole was wasted. Drilling rate with this machine was about 20 ft per hr and bit life 1600 ft of hole. While this rate was more than twice that obtained with the churn drills employed, the problem of water supply and drill cuttings disposal rendered the machine impractical from an operating standpoint. Consequently it was used only in that part of the operation for which water was easily supplied, when the character of the formation made it least difficult to wash cuttings away from the collar of the hole. In October 1949 it was suggested that drill cuttings be removed by compressed air, long used for this purpose on pneumatic drills, and collected at the collar by suction. Thereafter, the water pump on the Sullivan 56 was replaced by a 500-cfm air compressor and a trial run made. Air pressure at
Citation

APA: D. T. Van Zandt  (1955)  Mining - Change to Rotary Blasthole Drilling in Limestone Increases Footage, Cuts Time, Saves Manpower

MLA: D. T. Van Zandt Mining - Change to Rotary Blasthole Drilling in Limestone Increases Footage, Cuts Time, Saves Manpower. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account