Mining - Comments on Evaluation of the Water Problem at Eureka. Nev. (With Discussion)

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 547 KB
- Publication Date:
- Jan 1, 1956
Abstract
The following analysis was stimulated by a previous article on evaluation of the water problem at Eureka, Nev., which describes a method using formulas especially devised to calculate flow potential of extensive aquifers characterized by relatively even porosity and permeability throughout. The present discussion submits that the method was unsuitable for solving the kind of problem occurring at Eureka, where the amount of water available, rather than the flow potential, may have been the vital factor. IN an interesting article on evaluation of the water problem at Eureka, Nev.,1 W. T. Stuart describes how a difficult water problem, or one phase of it, may be evaluated by means of a small scale test. Test data are plotted by a method rendering, under certain conditions, a straight-line graph that can be projected to show how much the water table will be lowered by pumping at any specified rate for a given time. A formula is then used to determine the size of opening, or extent of workings, necessary to provide sufficient inflow to enable pumping to be maintained at that rate. At first glance this might seem the answer to a miner's prayer, but a word of caution is in order. It may not be the whole answer. Moreover, results obtained by the method described are reliable only for conditions approximating those assumed. Even where conditions do not meet this requirement, however, it may be possible to draw helpful inferences from the results, perhaps enough to facilitate another approach to evaluation of a problem. The two formulas Mr. Stuart used, the Theis formula and the one developed from it by Cooper and Jacob, were given field checks a number of years ago in valley alluvials by the Water Supply Div. of the U. S. Geological Survey and found to be reliable when the aquifer is very large in horizontal extent and sufficiently isotropic for the test well and observation wells to be in material of the same average permeability as the saturated part of the aquifer as a whole." Extensive valley alluvials, sands, and gravels can be evaluated in this way, and there are even cases in which the method could apply to porous limestones, such as flat beds of very large areal extent that have been submerged below the water table after extensive weathering. These are sometimes prolific sources of water for towns and industries. It is necessary for them to have been above the water table for some geologically long period of time in a fairly humid climate before submergence because the necessary high porosity and permeability, and large reservoir capacity, are the result of weathering, that is, of solution by the carbonic acid (H,CO3) in rainwater formed by the absorption of CO, from the air by raindrops, and this dissolving action must cease when all the H2CO3 has been consumed by re- action with the carbonate to form the more soluble bicarbonate. Consequently this weathering process is largely restricted to a zone that does not extend much below the water level, and submergence is necessary after the weathering to provide large reservoir capacity and good hydraulic continuity. On the other hand, water courses tend to form along faults and fractures in limestone, and to become enlarged by solution, well below water level when, as often happens, fresh meteoric water is circulated rapidly through them to considerable depth by hydrostatic pressure, as through an inverted syphon. Although the reservoir capacity of such water courses is relatively small they may extend far enough to tap more prolific sources. Cavities, and sometimes caves of considerable size, are found in limestones where the acid formed by the oxidation of sulphides has attacked them. This action can take place as deep below water level as surface water is carried by syphonic or artesian circulation, because the oxygen it carries in solution will not be consumed until it reacts with some reducing agent, such as a sulphide. Moreover, the formation of acid and solution of limestone in this way is not confined to the immediate vicinity of the sulphide. Oxidation of pyrite, for example, results in formation of acid in several successive stages, each taking place as more oxygen becomes available, as by the accession of fresh water into the circulation at some place beyond the sulphides. When the acid thus formed attacks the limestone, CO, is liberated and the ultimate effect of the complete oxidation of one unit of pyrite will be the removal of six times its volume of limestone as the sulphate and bicarbonate, both of which are relatively soluble. The reaction may be continued or renewed along a water course far from the site of the sulphides, where the small electric potential produced by contact with the limestone helped to start the reaction. Mr. Stuart refers2 0 caves in the old mining area in the block of Eldorado limestone southwest of the Ruby Hill fault at Eureka, Nev., and to the cavities encountered in drillholes in the downthrown block on the other side of the fault. Although he interprets these cavities as evidence that this formation was sufficiently isotropic (evenly porous and permeable) to give reliable results by the method he describes, they may, in fact, be entirely local conditions. There is reason to think they were probably formed
Citation
APA:
(1956) Mining - Comments on Evaluation of the Water Problem at Eureka. Nev. (With Discussion)MLA: Mining - Comments on Evaluation of the Water Problem at Eureka. Nev. (With Discussion). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956.