Mining - Diamond Drilling Problems at Rhokana

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 528 KB
- Publication Date:
- Jan 1, 1955
Abstract
WHEN diamond drilling was introduced in the Rhokana mines in 1939 it was used principally for pillar removal and for completion of the upper portions of shrinkage stopes which were being affected by increasing pressure. This method of drilling long blastholes proved so successful that it was extended gradually to cover stoping, pillar recovery, and hanging cave work. BY 1949 virtually all the ~roduction of Mindola and Nkana was being obtained by this method. At the present time 87,500 ft are drilled each month by the 80 diamond drills in daily operation. Responsibility for control and issue of diamond drilling equipment and crowns, as well as tabulation of all performance figures, was taken over by a sPecially formed Roto drill department, which also investigated the problems encountered with this new method. To assist this department a fully equipped test chamber, Fig. 1, was established underground where performances of various types of machines and equipment could be studied under conditions as nearly uniform as possible. Since the establishment of this department, which was eventually taken over and incorporated into the study department, considerable experimental work has been done on every aspect of the subject. The problems can be classified broadly under four headings: improvement of drilling equipment, crown design, machines, and stoping layouts. One of the major problems with drilling equipment has been to eliminate vibration. Owing to flexing of rods in the hole, severe friction is set up on the back end of the 'Ore barrel and On any high spots in the rods, inducing harmonic vibration in the string of rods and causing the crown to chatter against the face. This not only causes premature crown failure but also reduces penetration speeds and increases wear on the machines and rods used. In the early days, when only holes of EX size were drilled, vibration was largely overcome by periodic greasing of rods and core barrel during each run, but with the change-over to the larger BX hole it became obvious that application of grease by hand was inefficient and time-consuming, and attempts were made to perfect a self-lubricating core barrel. A series of these core barrels was made up and tested and a number of the latest type were used under normal operating conditions, but although footages up to 120 ft were drilled without refilling the overall performance was inconsistent, and the idea was shelved in view of the success of the stabilizer rods referred to later in this paper. At the same time tests were made with barrels 5 ft and later 6 ft long instead of the normal 2 ft. Although a slight improvement was noticed, greasing was still necessary. It was found that rod vibration increased as the core barrel became worn, and in an early test chamber experiment crowns drilled with a worn core barrel averaged 95 ft with a diamond loss of 4.76 carats, whereas the same type of crowns with a new barrel averaged 228 ft with a diamond loss of 3.13 carats. until then all BX drilling had been done with B-sized rods, but during a test on a string of BX-sized rods it was noticed that vibration was negligible. Because of the larger surface area of metal bearing on the sides of the hole, however, the friction and resistance of rods of this size rendered them impracticable on any but the most powerful of the machines, The use of stabilizers spaced evenly along the rods was the next logical step, and for this B couplings, see Fig. 2, were set with three tungsten carbide inserts 1 in. long placed around the periphery equidistantly and at an angle of 45" with a right hand lead. These were placed immediately behind the core barrel and then at 12-ft intervals, as it was found that vibration still occurred when the stabilizers were more than 15 ft apart. The effect of these stabilizers was immediately noticeable; holes were drilled with a minimum of vibration, penetration speeds were improved, and as it was no longer necessary to grease the rods there was a marked decrease in the overall drilling time for each hole. While tests were being made with the stabilizer comeb periodic were taking place with a set of tapered threaded rods, and because there was marked improvement in efficiency it was decided to incorporate the stabilizers and tapered threading in all new rods ordered for Rhokana. The feature of these rods is that only four full turns are required to tighten the coupling as against nine for the present type of B rods. Also, as they are self-centering it is virtually impossible to crossthread them. Each rod has a male 5" tapered Acme thread, Fig, 3, on one end and a female at the other, so that separate couplings are unnecessary, and every fifth rod has an
Citation
APA:
(1955) Mining - Diamond Drilling Problems at RhokanaMLA: Mining - Diamond Drilling Problems at Rhokana. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.