Mining - Mather Mine Uses Pipeline Concrete in Underground Operations

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 473 KB
- Publication Date:
- Jan 1, 1955
Abstract
TRANSPORTING concrete from mixer to forms has always been a problem. Twenty-five years ago this task was generally accomplished by means of wheelbarrow or concrete buggy. On large dam jobs, as the number of these projects increased, the gantry crane or highline came into use. Today several methods of handling concrete are employed on smaller surface construction jobs, for example, transit-mix trucks or dumpcrete trucks, which have crawler cranes with buckets for placing concrete into forms. In 1944, during early stages of developing Mather mine A shaft, several large underground concrete jobs were necessary. At this time the Cleveland-Cliffs Iron Co, purchased the first pump-crete machine, introduced by the Chain Belt Co. of Milwaukee. The machine was used to pour approximately 200 cu yd of concrete for a dam, or bulkhead, located 400 ft from the shaft. Concrete was mixed on surface, lowered down the shaft 1000 ft in a 2-cu yd bucket hung under one skip, spouted into the bowl of the pumpcrete machine from the bucket, and pumped directly into the forms. Since the day of the first pipeline concrete in 1944 to the present time, other equipment and other methods have been developed to permit transportation of concrete by pipeline through vertical and horizontal distances totaling 1 mile from mixer to forms. Much of the efficiency in present handling of underground concrete can be credited to the Bethlehem Cornwall mines, where concrete was transported through 6-in. pipe for great distances down an inclined shaft and along levels into forms.' During initial development of Mather mine B shaft, with concrete work under way on two or more levels at one time, the pneumatic concrete placer, Fig. 1, was selected as best adapted for underground concrete transportation. The 3/4-cu yd pneumatic placer is a small machine readily moved from one location in the mine to another. It can be equipped with two sets of mine car wheels, which will permit moving on regular mine tracks. It is therefore possible to send concrete through the pipe at great velocity; the pipeline is clean after each shot except for the film of cement adhering to the inside. With the proper slump in the concrete, it is possible to shoot concrete 2000 ft with this machine, using the mine supply of compressed air at 95 psi. This equipment was first used at Mather mine B shaft to concrete slusher drifts, Figs. 2 and 3, and finger raises located about 2000 ft from the shaft. In several instances there were bends into crosscuts and up vertical distances into the forms. For the first pours two placers were used. The first was located near the shaft where the concrete could be spouted into it from a 2-cu yd concrete bucket on the cage. The second was set on the side of the drift at a point approximately 1500 ft from the shaft. The concrete was shot directly into the second placer from the first unit and from the second machine directly into the forms. After completion of several pours with the two machines, a trial pour with only one placer located at the shaft proved that the second placer could be eliminated. Since then all pours have been successfully completed with only one placer underground. As production of iron ore from the mine increased and the development program expanded, use of the cage for handling mine supplies and concrete became a major problem. This brought about the first attempt at shooting concrete vertically down the shaft for 2600 ft. A 6-in. pipeline with victaulic couplings installed during shaft sinking was used for the trial. One placer was set on surface 250 ft from the collar of the shaft so concrete could be spouted directly into it from the mixer. This machine shot the concrete 250 ft horizontally on surface to the shaft, 2600 ft vertically down the shaft, and 100 ft horizontally into the second placer located near the rib of the shaft station or plat. The second machine shot the batch into the forms, about 2000 ft. Total distance horizontally and vertically was 4800 ft. The entire time cycle for a ¾-cu yd batch of concrete from the mixer on surface to the forms underground totaled about 5 min. During the past two years the two-placer method from the mixer on surface to the forms underground has proved a very efficient means of transporting underground concrete. Advantages of using pipeline concrete are as follows: 1—Interference with normal mining operation is eliminated. When the cage, skips, mine cars, or mine openings are used for transporting concrete and materials used for making concrete, mine operation suffers in one way or another.
Citation
APA:
(1955) Mining - Mather Mine Uses Pipeline Concrete in Underground OperationsMLA: Mining - Mather Mine Uses Pipeline Concrete in Underground Operations. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.