Mining - More Rock Per Dollar from the MacIntyre Pit

The American Institute of Mining, Metallurgical, and Petroleum Engineers
F. R. Jones
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
375 KB
Publication Date:
Jan 1, 1957

Abstract

AT Tahawus, N. Y., National Lead Co. operates the MacIntyre development. Here the world's largest titanium mine produces 5200 long tons of ore per day and pours 8000 long tons of waste rock over its dumps. Concentrated ilmenite is sent by rail to National Lead Co. pigment plants, and a second product, magnetite, is sold to steel producers in raw form or is agglomerated and shipped as sinter. Several earlier attempts had been made to produce iron from the deposits, which have been known since 1826. These attempts failed, chiefly because of titanium impurity. In 1941 the present owners reestablished the operation for production of war-scarce ilmenite, and the impurity became the main product. The Ore: The MacIntyre ore zone is about 2400 ft long and 800 ft wide in horizontal measurements. Ore outcrops were found on the northwest side of Sanford Hill, 450 ft above Sanford Lake and 2500 ft southeast. The zone dips at about 45" toward the lake and plunges to the southwest. The ore minerals, ilmenite and magnetite, are unevenly distributed in bands roughly parallel to the long axis of the ore zone and are interspersed with bands and horses of waste. Hanging wall ores are fine grained and grade from rich ore to waste rock or gabbro. Footwall ores are coarse grained and are almost entirely ilmenite and magnetite. The foot-wall waste rock, anorthosite, is the common country rock. Several faults cut the ore zone. These faults have no great displacement but do contribute to the great physical variations in ore rock and surrounding waste. The Mine: The MacIntyre mine is an open pit operation, with benches at 35-ft intervals. The lowest bench is now 54 ft below lake level. Loading equipment consists of three electric-powered shovels (a P & H model 1400 with 4-yd dipper and two Bucyrus-Erie models 85-B with 2%-yd dippers) and one diesel-powered shovel (a Northwest model 80D with 2%-yd dipper). Ore and waste are transported to a 48x60-in. jaw crusher in ten 22-ton Euclid trucks with 300-hp diesel engines. Ordinarily the two Bucyrus-Erie 2 % -yd shovels load ore into a fleet of three or four trucks. This combination works two 8-hr shifts per day, moving 5200 long tons of ore to the crusher and removing a small portion of the waste rock. The P & H model 1400 shovel, with a fleet of four trucks, loads waste on three shifts per day. The mine operates on a 5-day week, with a small maintenance crew working Saturday. Oversize rock is broken by a dropball handled by an Osgood model 825 rubber-mounted crane.' Ore and waste are broken by drilling and blasting 9-in. diam vertical holes behind the benches. Bucyrus-Erie 42-T churn drills are used to drill the holes, which are extended 4 ft below the bench level on which the broken rock will fall. Drilling and Blasting History: In its early years the mine was equipped with Bucyrus-Erie 29-T churn drills, which drilled 6-in. holes. To keep up with production requirements the hole diameter was soon increased to 9 in., and by 1950 the three 42-T drills now in use had been acquired. Early blasting experiments with different kinds and grades of explosive led to adoption of 90 pct straight gelatin dynamite as standard. It was recognized that this explosive was expensive, and from the start of operations until 1950 extensive experiments were made using blasting agents of the ammonium nitrate family. Results were recorded as uniformly poor, with great build-up of oversize rock. The expense of these experiments, and the discouraging results, caused the abandonment of any expectation of breaking MacIntyre rock with anything but 90 pct straight gelatin dynamite. Further standardization led to 9-in. well drillhole spacings set at 16 ft in ore and 18 ft in waste, exceptions being permitted only for unusual conditions. The hole burdens were theoretically about 22 ft. Due to the extreme back-slope of bench faces, caused by blasting with heavy charges of dynamite, actual burdens were commonly well over 30 ft. Lack of precise control resulted in many holes having a burden as light as 15 ft. General practice was to stem 6 or 7 ft of hole with magnetite concentrate, the amount of stemming being left to the discretion of the pit foreman. Usually all holes in a row were fired instantaneously with Primacord detonating fuse. Millisecond delays were
Citation

APA: F. R. Jones  (1957)  Mining - More Rock Per Dollar from the MacIntyre Pit

MLA: F. R. Jones Mining - More Rock Per Dollar from the MacIntyre Pit. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1957.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account