Mining - Portable Crusher for Open Pit and Quarry Operations (MINING ENGINEERING. 1960, vol. 12. No. 12. p. 1271)

The American Institute of Mining, Metallurgical, and Petroleum Engineers
B. J. Kochanowsky
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
802 KB
Publication Date:
Jan 1, 1961

Abstract

The idea of a portable crusher is not new. Many such crushers are available but they are small and designed for construction work. For many years the author has suggested, both in this country and in Europe, the building of larger portable crushers intended expressly for use in quarries or open pits. Although not applicable under all conditions, there are mining operations where a mobile crusher arrangement could be more profitable than the facilities now used. The primary use of a portable crusher, i.e., a crusher mounted on crawlers or tires, in the rock and mining industries is to reduce costs by permitting the substitution of conveyor belt haulage for truck or track haulage. The usual sequence of operations in surface mining is drilling, blasting, loading, haulage, and crushing. Haulage is normally accomplished by truck or track-mounted cars, the latter method being used for the longer distances. However, by using a portable crusher in the pit, the sequence of operations would be changed so that the crushing stage would occur before haulage (Fig. 1). Such a sequence would permit the use of conveyors to replace the more expensive truck or track haulage methods. Since most quarry and open pit operations normally require a crushing stage, the only additional costs incurred will be due to the investment required to purchase or construct a mobile arrangement for a crusher. But this factor has to be weighed against the advantages to be gained by conveyor haulage. As shown in Fig. 2, transportation of material by belt conveyor over short distances is less expensive than by truck. The inclination of the belt has no effect on belt speed; consequently, the hourly tonnage moved remains the same. Conversely, the output rate of trucks as expressed in tons or ton-miles per shift decreases proportionally to the haulage speed, which is considerably slowed by the steepness of the road (Fig. 3, left). Although maximum possible grades and maximum economic grades of haulage are greater for a belt than for a truck (over the same total lift), the longer haulage distances favor the use of trucks. Although power consumption for hauling on a grade increases for both conveyances, the rate of power consumption increases faster for trucks than for conveyor belts (Fig. 3, right). Since the output rate and related fixed costs are affected by the travel speed, total haulage costs with trucks would increase with the grade more rapidly than the similar costs of conveyor belts (Fig. 4). Travel distance, road grade, speed, size and number of pieces of equipment, efficiency of operation, and many other factors affect such haulage costs. In general terms it can be said that the shorter the distance, the steeper the grade, and the greater the output, the more advantageous the belt becomes in comparison to truck or track haulage. In addition to potential cost savings in haulage procedures, a portable crusher would allow better utilization and performance of shovels. Loading operations would not be interrupted as often by the necessity of waiting for cars or trucks. Unfortunately, the application of belts in open pits for haulage from bench sites is generally not practical under existing conditions because a belt fed directly by a mechanical shovel can be torn, damaged, or worn out quickly by the large rock fragments falling on it during loading. However, by using a mobile crusher this situation can be avoided. As shown in Fig. 1 (b), the shovel feeds rock into the crusher located behind it. The crushed material is initially transported by an extensible and/or movable belt, thence by a longer stationary conveyor to the plant where the material is subjected to further treatment by secondary crushing, screening, etc. The first-mentioned conveyor, needed to bridge the distance between the shovel and the stationary conveyor, is necessarily variable in length owing to the continuous movement of the shovel and the desire to keep the stationary belt at a safe distance from the bench during blasting operations. The remarkable part of mobile crusher operations is the extra-ordinarily high output per man-shift, the low maintenance and power requirements for haulage, and the increased output of the loading shovel. A cement quarry which has been using a portable crusher and conveyor since 1956 requires only three men to operate the shovel and crusher and to transport the crushed rock by belt from the quarry face to the screening plant. If truck haulage
Citation

APA: B. J. Kochanowsky  (1961)  Mining - Portable Crusher for Open Pit and Quarry Operations (MINING ENGINEERING. 1960, vol. 12. No. 12. p. 1271)

MLA: B. J. Kochanowsky Mining - Portable Crusher for Open Pit and Quarry Operations (MINING ENGINEERING. 1960, vol. 12. No. 12. p. 1271). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account