Mining the San Juan Orebody El Mochito Mine, Honduras, Central America

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Robert C. Paddock
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
10
File Size:
664 KB
Publication Date:
Jan 1, 1981

Abstract

INTRODUCTION A way of producing 3,000 tpd from the El Mochito Mine was needed. Of this production, 2,000 tpd must come from the San Juan orebody. The original sub-level stoping method did not give satisfactory results due to ground instability, and the highly irregular ore/waste contacts encountered . The experience gained from the initial system helped guide research into the ground instability problem. Results from this work, combined with knowledge gained about the orebcdy configuration, defined constraints that were previously not fully appreciated. These constraints, and others, combined with objectives, were considered together to develop a new mining method. No single technique was found to be suitable, so a hybrid mining system was developed. A combination of ramping, cut and fill, and vertical crater retreat, with an option to use top heading and benching was developed. To complement the mining system, the type of equipment needed was decided upoun. Also, to support the mining system at this expanded rate of product ion, major modifications of existing infrastructure were required. THE EL MOCHITO MINE The El Mochito Mine, of Rosario Resources Corporation, has been in continuous product ion since 198. The mine began operations in April of that yeas at a rate of 100 tpd. The reserves in 198 were 100,000 tons of silver ore assayed at 1,250 grams per tonne. As of the end of 1979, the El Mochito orebodies have produced over 5.6 million tonnes of ore averaging 516 grams per tonne silver, 6.8 lead, and 7.8% zinc. Present ore reserves are about 7.9 million tonnes, averaging 138 grams per tonne silver, 4.6% lead, and 8.7% zinc, with minor quantities of copper, cadmium and gold. An expansion plan to increase mill production two fold to 2,500 tonnes per day is underway. This expansion will require the mine to produce 3,000 tpd. The mine consists of numerous orebodies, all of which have been mined to a certain extent. Of all the orebodies, the San Juan contains 8% of known reserves. This amounts to about 6.7 million tonnes. The significance of the San Juan orebody to the future life of the El Mochito Mine is obvious. If the required mine production of 3,000 tpd is to be sustained, the San Juan must be the source of the majority of that production. Due to the mineability and overall logistics concerned with the other orebodies, the San Juan must be able to reach and maintain a production rate of 2,000 tpd by 1982. GEOLOGY OF THE SAN JUAN OREBODY The El Mochito Mine is a classic example of a chimney replacement deposit in limestone. Similar deposits axe found in Mexico, at the Naica, Providencia, and Santa Eulia Mines. The El Mochito Mine is located at the south- western end of the Sula Valley on the western edge of the Honduras Depression in the Central Cordillera and Central Highlands of Honduras in a setting of Mesozoic sediments. The orebodies occur in a structural basin developed between NNE trending normal faults and apparently hinged on the south end. Topographically, the Mochito Basin lies between the uplifted Santa Barbara mountain in the west and the Palmer Ridge on the east. The San Juan orebody occurs near the intersection of the NE trending San Juan fault and the ENE trending Porvenir fault. The downward continuation of the orebody is controlled by the westward rake of these NW and N dipping structures. The discovery of the San Juan orebody is attributed to analysis of structural evidence of known ore deposits by in-company geologists. The composition of the San Juan orebody is primarily garnet skarn, with local concentrations of hedenbergite and magnetite. The economically important sulfide mineralization consists of (in decreasing abundance), sphalerite , galena, pyrrhotite , and chalcopyrite. There is some indication that a Cu-Ag mineral such as tetrahedrite may also be present. The skarns were formed by replacement of the original limestone by hydrothermal water migrating upward roughly along the intersection between the Porvenir fault system and the San Juan fault system. Textural evidence suggests that the orebody is a composite of several pulses of hydrothermal activity which would explain, in pat, the great irregularity of the contacts and the large horizontal variation in mineralogy. A general pattern of skarn types can be seen in the orebody, partially accounting for the observed lateral variation in grades. This zonation is very generalized, and one or more zones may be missing in any given locality. The orebody is almost invaxiably surrounded by a 2 cm to 25 cm zone of bustamite skaxn with low values. The border skarn is usually
Citation

APA: Robert C. Paddock  (1981)  Mining the San Juan Orebody El Mochito Mine, Honduras, Central America

MLA: Robert C. Paddock Mining the San Juan Orebody El Mochito Mine, Honduras, Central America. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1981.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account