Natural Gas Technology - A Method of Predicting the Availability of Natural Gas Based on Average Reservoir Performance

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Ralph E. Davis Lee Hillard Meltzer
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
10
File Size:
791 KB
Publication Date:
Jan 1, 1953

Abstract

INTRODUCTION During the past few years emphasis has been placed upon methods of estimating the future expectancy of gas production from natural gas fields. Before technical methods were applied, the production expectancy over future years was based upon the knowledge of gas well behavior, learned through long experience and embedded in the "know-how" of men long in the gas producing business. It is doubtful that a technical study of future expectancy of a gas field or a group of fields was ever prepared for the preliminary planning of a natural gas pipe line system built prior to about five years ago. The decline in well production capacity was naturally recognized by all familiar with the business since its earliest beginnings more than 75 years ago. In 1953, the Bureau of Mines published Monograph Number 7, "Back-Pressure Data on Natural Gas Wells and Their Application to Production Practices," which gave to the industry the first technical analysis of the decline in production of individual gas wells. This method affords a means of estimating the future production in relation to decline in reservoir pressure. The demand for technical determination of expectancy of future gas productivity from fields or a group of fields led technical men to the application of the knowledge of well behavior to the problems. The decline in a well's ability to produce as pressures declined could be estimated by the use of the curve known as the "back-pressure potential curve" as developed by the Bureau of Mines. A field containing few, or even numerous, wells could be analyzed on the basis of the sum of potentials of all wells. In most studies of this nature, the problem is to estimate the rate of production that can be expected, not only from present wells but also, from wells that will in the future have to be drilled into the reservoir being studied. The "back-pressure potential" method requires that the following data be known or estimated: (1) Proved gas reserves. (2) Current shut-in pressures and rate at which shut-in pressures change with production. (3) Back pressure potential data on wells in the source of supply. (4) Ultimate number of wells which will supply gas, and their potential. (5) Limitations on productivity such as line pressures against which the wells will produce, friction drop in the producing string, and so forth. It is evident that the resulting estimate of gas available in each year for a future of say, 20 years, contains many uncertainties. While the method may have considerable merit for a field that is fully developed, it cannot be completely dependable in fields that are only partially developed. In such cases, some of the data upon which it is based can only be estimated or assumed. In the study of this problem during the past few years, a method has been developed which we believe has great merit, especially when applied to fields subject to substantial future drilling, and when applied to the study of fields which, on the average, appear to have characteristics similar, in general, to the average of the fields used in the development of the "yardstick" outlined herein. From an analysis of the production history of 49 reservoirs which are depleted, or nearly depleted, a curve has been constructed which shows the average performance of the reservoirs during the declining stages of production. When properly applied, this "average performance curve" can be used to determine the stage of depletion at which a reservoir or group of reservoirs will no longer be able to yield a given percentage of the original reserves. "AVAILABILITY" AND "AVAILABILITY STUDIES" The rate at which. a reservoir will yield its gas depends basically upon physical factors, such as the thickness and permeability of the sand, the effect of water drive, if any, and other conditions, and upon economic factors, such as the number of wells drilled. Within the ranges set by the physical conditions, a rate of delivery tends finally to become established. The rate (or range of rates) represents a balance between the interests of the operator, who desires the maximum return from his property and of the pipe line owner, who desires to maintain a firm supply for his market. This balance, which is influenced by the terms of the contract, determines the capacity which will be developed by the operator, and the time and rate at which the decline in production is permitted to occur. Thus the "availability" of gas
Citation

APA: Ralph E. Davis Lee Hillard Meltzer  (1953)  Natural Gas Technology - A Method of Predicting the Availability of Natural Gas Based on Average Reservoir Performance

MLA: Ralph E. Davis Lee Hillard Meltzer Natural Gas Technology - A Method of Predicting the Availability of Natural Gas Based on Average Reservoir Performance. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account