Natural Gas Technology - Natural Gas Hydrates at Pressures to 10,000 psia

The American Institute of Mining, Metallurgical, and Petroleum Engineers
H. O. McLeod J. M. Campbell
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
316 KB
Publication Date:

Abstract

This paper presents the results of the data obtained in the first stage of a long-range study at high pressures of the system, vapor-hydrate-water rich liquid-hydrocarbon rich liquid. The data presented are for the three-phase systems in which no hydrocarbon liquid exists. Tests were performed on 10 gases at pressures from 1,000 to 10,000 psia. One of these was substantially pure methane, and the remainder were binary mixtures of methane with ethane, propane, iso-butane and normal butane. Several conclusions may be drawn from the data. 1. Contrary to previous extrapolations, the hydrocarbon mixtures tested form straight lines in the range of 6,000 to 10,000 psia which are parallel to the curves for pure methane, when the log of pressure is plotted vs hydrate formation temperature. 2. The hydrate formation temperature may be predicted accurately at pressures from 6,000 to 10,000 psia by using a modified form of the Clapeyron equation. The total hydrate curve may be predicted by using the vapor-solid equilibrium constants of Carson and Katz' to 4,000 psia and joining the two segments with a smooth continuous curve between 4,000 and 6,000 psia. 3. The use of gas specific gravity as a parameter in hydrate correlations is unsatisfactory at elevated pressures. 4. The hydrate crystal lattice is pressure sensitive at elevated pressures. INTRODUCTION Prior to 1950 many studies had been made of the hydrate forming conditions for typical natural gases to pressures of 4,000 psia.""'"'"" Most of these attempted to correlate the log of system pressure vs hydrate formation temperature, with gas specific gravity as a parameter. One of the more promising correlations was made by Katz, et al, which utilized vapor-solid equilibrium constants. The only published data above 4,000 psia are those of Kobayashi and Katz7 for pure methane to a pressure of 11,240 psia. In the intervening years, most published charts for the high-pressure range have represented nothing more than extrapolations of the low-pressure data, with the methane line serving as a general guide. The reliability of these charts has become increasingly doubtful (and critical) in our present technology as we handle more high-pressure systems. The portion of our high-pressure hydrate research program reported here was designed to: (1) investigate the reliability of existing charts; (2) obtain actual data on gas mixtures to 10,000 psia; and (3.) develop a simple hydrate correlation that was more reliable than those which simply used specific gravity as a parameter. Binary mixtures of methane and ethane, propane normal butane, or iso-butane were injected into a high-pressure visual cell containing an excess of distilled water. Hydrates were formed and then melted to observe the decomposition temperature of the hydrates at pressures from 1,000 to 10,000 psia. EQUIPMENT The equipment consisted of a Jerguson 10,000-lb high-pressure visual cell, a 10,000-1b high-pressure blind cell and a Ruska 25,000-1b pressure mercury pump. The visual cell was placed in a constant-temperature water bath controlled by a refrigeration unit and an electric filament heater. A Beckman GC-2 gas chromatograph was used in analyzing the gas mixtures after each run was completed. EXPERIMENTAL PROCEDURE After evacuating the gas system, the heavier hydrocarbon was injected into the high-pressure mixing cell to that pressure necessary to give the desired composition. This cell then was pressured to 1,100 to 1,200 psia by methane from a high-pressure cylinder. The mixing cell holding the gas contained a steel flapper plate and was shaken intermittently over a period of 15 minutes. After mixing, the valve to the high-pressure visual cell containing excess distilled water was opened, and the gas mixture was allowed to flow into the cell. The temperature in the water bath was lowered 10" to 15'F below the estimated hydrate decomposition point. As a first check, the temperature was increased at a rate of 1°F every six minutes to find the approximate point of decomposition. It was again lowered 1.5° to 5°F to form hydrates. The temperature was raised to within l° of the estimated decomposition point and then increased 0.2F every 10 to 15 minutes until the hydrates decomposed. This procedure was repeated at various pressures to obtain 7 to 13 points for each mixture between 1,000 and 10,000 psia. After completion of the hydrate decomposition tests, the gas mixture composition was analyzed with a calibrated gas chromatograph. These gas analyses have an estimated error of ± .1 per cent.
Citation

APA: H. O. McLeod J. M. Campbell  Natural Gas Technology - Natural Gas Hydrates at Pressures to 10,000 psia

MLA: H. O. McLeod J. M. Campbell Natural Gas Technology - Natural Gas Hydrates at Pressures to 10,000 psia. The American Institute of Mining, Metallurgical, and Petroleum Engineers,

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account