Natural Gas Technology - The Volumetric Behavior of Natural Gases Containing Hydrogen Sultide and Carbon Dioxide

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 1583 KB
- Publication Date:
Abstract
Experimental data have been obtained on the volurrletric behavior of ternary mixtures of methane, hydrogen sulfide and carbon dioxide at temperalures of 40°, 100" and 160°F up to pressures of 3,000 psia. The results indicate that the compressibility factors for this system do not agree with compressibility factors for sweet natural gases at the same pseudo-reduced conditions. The deviation increases as the temperature and methane content decrease. Discrepancies of up to 35 per cent were observed. A careful analysis has been made of the existing pUrblished data on compressibility factors for binary systems containing light hydrocnrbons and hydrogen sulfide or carbon dioxide. It has been found that the deviation of actual from predicted compressibility factors for methane-acid gas mixtures is a function of the methane content and the pseudo-critical properties,.v of the mixture. The ratio between actual compressibility factors for methane-acid gas mixtures and compressibility factors for sweet natrlral gases at the same pseudo-reduced conditions has been currelated over a range of pP,, from 0 to at least 7 arid a range of pT, from about 1.15 to at 1east 2 0 with an error not exceeding 3 per cent and over most of the range within I per cent. The validity of the correlation for mixtures containing appreciable hearvier hydrocorbons has not been fully established, but it is shown to be preferable than the use of a corretation based only on hydrocarbons. INTRODUCTION Although a relatively accurate method for predicting compressibility factors of pure materials is provided by charts based on reduced properties and the assumption that the compressibility factor is a unique function of T P and z the determination of the correct values of compressibility factors for gas mixtures is somewhat difficult. Two general methods of dealing with gaseous mixtures have been proposed. The first assumes a direct or modified additivity of certain properties of the mixture in terms of the properties of the individual components. Examples of this method are based on the familiar laws of Dalton and Amagat. The second method averages the constants of an equation of state applicable to the pure components. Both of these methods are of limited value in engineering calculations because the first usually provides reliable answers only over narrow ranges of pressure and temperature and the second is cumbersome to handle. In petroleum engineering practice accurate estimations of the volumetric behavior of natural gases arc frequently required. To fulfill this need, several generalized compressibility charts have been developed.' ' Of these, the one prepared by Standing, el al is widely used at present. In the construction of charts of this type a third method for dealing with mixtures has been followed. It is based on correlation of pseudo-critical properties as outlined by Kay and calculated from the critical properties of the individual components in a mixture. Although these charts provide relatively accurate information on the compressibility of dry or wet sweet natural gases, they are less reliable when used for gases containing high concentrations of hydrogen sulfide or carbon dioxide or both. Thus, an experimental program, although time consuming, is the best means now available for the determination of the volumetric behavior of sour or acid gas mixtures. An increased interest in the behavior of these gas mixtures, particularly in connection with some of the fields in Western Canada where the acid gas concentration of the reservoirs may be as high as 55 per cent and where hydrogen sulfide alone may be as high as 36 per cent, provided the incentive for this study. It was the purpose of the investigation to determine the volumetric behavior of selected mixtures of methane, hydrogen sulfide and carbon dioxide over a range of temperature from 40" to 160°F and at pressures up to 3,000 psi. EXPERIMENTAL METHOD The apparatus used in this investigation was basically the same as that described by Lorenzo.'" The amount of each pure component used in preparing the gas mixtures was measured over mercury in a glass-windowed pressure vessel. The pure components were then transferred individually in the desired amounts to a second glass-windowed pressure vessel where the volumetric behavior of the mixture was determined. Volume was varied by mercury injection or withdrawal. The capacity of the cell was about 125 cc. Temperatures in the cells were measured with copper-constantan thermocouples and a Leeds Northrup semi-
Citation
APA:
Natural Gas Technology - The Volumetric Behavior of Natural Gases Containing Hydrogen Sultide and Carbon DioxideMLA: Natural Gas Technology - The Volumetric Behavior of Natural Gases Containing Hydrogen Sultide and Carbon Dioxide. The American Institute of Mining, Metallurgical, and Petroleum Engineers,