Non-Ionizing Radiation Health Hazards In Coal Mining

- Organization:
- Society for Mining, Metallurgy & Exploration
- Pages:
- 4
- File Size:
- 202 KB
- Publication Date:
- Jan 1, 1981
Abstract
Few, if any, of the non-ionizing radiation health hazards to be found in either surface or underground coal mining are uniquely different because of their being found in the work environment. Hence, they can be considered generally for their bio-effects on the worker when found in the mining work environment. The same may not be said, however, for the lack of non-ionizing radiation and its bio-effects, particularly as it relates to underground coal mining. The term "non-ionizing radiation" refers to various forms of electromagnetic radiation of wavelengths longer than those of ionizing radiation. As the wavelength gets longer the energy of electromagnetic radiation decreases. Therefore, all non-ionizing forms of radiation have less energy than cosmic, gamma, and X-radiation. In order of increasing wavelength, non-ionizing radiation includes ultraviolet, visible light, infrared, microwave, and radiofrequency radiations. The energy frequency and wavelength range of both the ionizing and non-ionizing electromagnetic forces are shown in Table I. To convert the wavelengths of various radiations to Ångström units, one multiplies millimicrons by ten. In a vacuum, all electromagnetic radiation has the same velocity, namely 3 x 1010 centimeters per second. The natural source of radiant energy here on earth is our sun which emits radiation continuously over a wide spectrum. This radiation on average reaching earth ranges from 290 nm in the ultraviolet range to over 2,000 nm in the infrared range with a maximum intensity of about 480 nm in the visual range. You will note this falls into the visible blue wavelength and accounts for our blue sky and blue ocean and deep water effects. We are all familiar with the fact that the passage of solar radiation through the atmosphere to the earth changes the spectrum considerably because the atmosphere absorbs and scatters many of the sun's rays. The ozone in the upper atmosphere absorbs the shorter ultraviolet wavelengths and water vapor absorbs some of the infrared wavelengths. Smoke, dust particles, gas molecules and water droplets scatter the rays, especially those of shorter wavelengths. In addition to the sun, every gas, liquid or solid object at a temperature above absolute 0° radiates energy. Solid objects emit almost continuous spectra. At low temperatures only radiation of the longer wavelengths in the infrared range is emitted, but as the temperature of the object is increased, more and more of the shorter wavelengths are added. This fact is most readily demonstrated by heating a piece of steel. When a piece of steel reaches a temperature of about 1,700° Fahrenheit, it gives off radiation at the red end of the visible spectrum and appears dull red. As the temperature is further increased, the shorter rays are also emitted, until at about 2,100°F, the metal appears white, due to the emission of wavelengths throughout the entire visible range. Gasses, on the other hand, when heated emit radiant energy only at certain wavelengths, which are characteristic of their chemical structure. This latter fact is of importance in underground coal mining as high intensity gas and vapor lamps are becoming more and more utilized for illumination in underground coal mining. The biologic effect of non-ionizing radiation exposure depends upon the type and duration of exposure and on the amount of absorption by the miner. The effects of this radiant energy on the miner fall into four distinct types: (1) the heating effect of infrared radiation, (2) the effect on the eye of visible radiation, (3) the effects of ultraviolet radiation, and (4) the growing potential effects of the misuse of microwave radiation. Each non-ionizing type of radiation will be considered individually. ULTRAVIOLET RADIATION The sun is the major source of ultraviolet radiation, which is of concern in open pit and surface mining at certain seasons and in certain climes necessitating protection for the surface miners under those conditions; nonetheless, there are some man-made sources such as electric arc lights, welding arcs, plasma jets, and special ultraviolet bulbs for illumination underground that demand surveillance in the underground environment to be aware of whether the miners are at risk above the threshold limit values allowable. Since ultraviolet radiation has little penetrating power, the organs that are affected are the skin and the eyes. Ultraviolet radiation is strongly absorbed by nucleic acids and proteins, and the effects in man are largely chemical rather than thermal. Short-term effects on miners include acute changes in the skin. These are of four types: (a) darkening of pigment, (b) erythema (sunburn), (c) increase in pigmentation (tanning) and (d) changes in cell growth. Ultraviolet radiation also causes acute effects on the tissues of the eye. Overexposure can lead to keratitis, inflammation of the cornea, and conjunctivitis. Long-term effects of ultraviolet exposure include an increase in the rate of ageing of the skin with degeneration of skin tissue and a decrease in elasticity. Late effects of ultraviolet on the eye include the development of cataracts. The most serious chronic effect of ultraviolet exposure is skin cancer. Ultraviolet radiation effects are increased by some industrial materials and drugs. After exposure to such compounds as cresols, the skin is exceptionally sensitive to ultraviolet radiation. Photosensitivity reactions occur after exposure to a variety of other chemicals and drugs including dyes, phenothiazines, sulfonamides, and sulfanylureas. On the other hand, we must remember that ultraviolet radiation has an important role in the prevention of rickets. Vitamin D is produced by the action of
Citation
APA:
(1981) Non-Ionizing Radiation Health Hazards In Coal MiningMLA: Non-Ionizing Radiation Health Hazards In Coal Mining. Society for Mining, Metallurgy & Exploration, 1981.