Origin of the Gold Mineralization at the Haile Mine, Lancaster County, South Carolina (46d8d03d-09d0-4cd6-831b-e6afcf0d1784)

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 257 KB
- Publication Date:
- Jan 1, 1981
Abstract
Gold was discovered at the Haile mine in Lancaster County, South Carolina, in 1827 or 1828, and since that time the mine has been worked intermittently by both open-pit and underground methods until its forced closure in 1942 by World War II. Production figures are incomplete, especially for the early years, but the total gold produced is estimated to have been greater than 200,000 oz. Thus, the Haile mine has been the most productive gold mine in the eastern United States. The upper, residually enriched ores were relatively rich, but the bulk of the production has come from the mining of lower grade ores. General Geology The Haile mine is located in late Precambrian or early Paleozoic rocks of the Carolina slate belt at the edge of the Atlantic Coastal Plain [(Fig. 1)]. The metamorphic grade is lower greenschist facies and the rocks have been folded into a sequence of northeast-trending isoclinal folds. The gold is associated with siliceous, pyritic, and kaolinized felsic pyroclastic and tuffaceous rocks in an interbedded volcanic and volcanoclastic sequence of felsic to mafic tuffaceous rocks and argillaceous sediments [(Fig. 2)]. The ore bodies occur in two northeast trending zones approximately 500 m apart; each zone is 30-70 m wide and 600 m or more in length, with possible extensions to the east beneath the Coastal Plain sediments. Mineralogy. Gold in the Haile mine is always associated with siliceous and/or pyritic ores. The gold occurs in at least three states: As native gold as originally deposited; as residual gold derived from the breakdown of pyrite; and as gold included in pyrite. Major associated minerals in addition to quartz and pyrite are kaolinite, sericite, and iron oxides. Minor molybdenite, arsenopyrite, pyrrhotite, copper sulfides, sphalerite, rutile, and topaz are also present. Petrology. The gold-bearing ore zones vary from highly siliceous rocks to pyritic massive sulfide lenses. This variation is most easily seen today along strike from the Haile pit to the Red Hill pit. Ore grade material still exposed in the wall of the Haile pit consists of a highly siliceous and very thinly bedded rock containing minor pyrite. Along strike, the character of the mineralization changes to pyritic massive sulfide lenses occurring interbedded with siliceous horizons at the Red Hill pit. The siliceous rocks vary from the thinly-bedded material as just described from the Haile pit to silicified fragmental-appearing rocks to totally recrystallized cherty rocks lacking any recognizable primary features. Scattered, apparently at random, throughout the very thinly-bedded and very fine-grained ore face of the Haile pit are seemingly anomalous silica-rich clasts or concretions up to 5 cm in diameter which will be discussed later in this paper. Alteration. One of the most striking features of the Haile deposit is the alteration mineral assemblage which is intimately associated with the siliceous and pyritic ores. This altered material has been intersected in drill core at depths greatly exceeding the modern weathering profile and is, therefore, of hydrothermal origin rather than from supergene processes. This "sericite," actually a fine-grained mixture of sericite, kaolinite, and quartz, can be shown to stratigraphically underlie the gold- quartz-pyrite zone, and is well exposed in the open pit just southeast of the Haile and Bumalo pits. Relict textures indicate that this highly altered material was originally a felsic ash flow. Other similar alteration zones have been found in outcrop and drill core underlying the remaining ore bodies. Thus each of the mineralized zones consists of two parts: A siliceous and/or pyritic gold-bearing ore zone which is stratigraphically underlain by a zone of high alumina minerals, in this case sericite and kaolinite along with variable amounts of quartz. A green chrome mica, presumably fuchsite, is present in trace amounts in the high alumina zone. Genesis An adequate model to explain the origin and distribution of the gold deposits in the Carolina slate belt is presently lacking. Worthington and Kiff1 suggested a volcanogenic origin for certain gold deposits in the North Carolina slate belt from the waning exhalations of felsic volcanic piles. They also pointed out that such an origin has similarities to many epithermal precious metal deposits located in more recent volcanic piles in the western United States. A further key to the understanding of the genesis of the gold mineralization at the Haile mine is the close association of the mineralization in siliceous and sulfidic horizons to the genetically related and stratigraphically underlying high alumina alteration. Such high-alumina alteration is common around felsic volcanic centers in the Carolina slate belt and the mineralogy as seen today consists of some combination of kaolinite, sericite, pyrophyllite, kyanite, andalusite or sillimanite depending on the local prevailing grade of metamorphism. Accompanying the high-alumina alteration are large quantities of pyrite and iron-oxide minerals as well as characteristic minor accessory minerals often including base metal sulfides, fluorine-bearing minerals (topaz, fluorite, apatite), titanium-bearing minerals (ilmenite, rutile),
Citation
APA:
(1981) Origin of the Gold Mineralization at the Haile Mine, Lancaster County, South Carolina (46d8d03d-09d0-4cd6-831b-e6afcf0d1784)MLA: Origin of the Gold Mineralization at the Haile Mine, Lancaster County, South Carolina (46d8d03d-09d0-4cd6-831b-e6afcf0d1784). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1981.