Papers - Observations on the Orientation Distribution and Growth of Large Grains near (110)[001] Orientation in Silicon Iron Strip

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 1088 KB
- Publication Date:
- Jan 1, 1967
Abstract
Conditions are described for producing, by primary recrystallization, a matrix suitable for the growth of large grains near (110)[001] orientation in silicon iron strip by secondary recrystallizaliun in a steep temperature gradient. The orientation distribution of these large grains is expressed in terms of rotational deviations about the cross-rolling direction, the rolling direction, and the normal to the sheet, the deviational spread increasing in that order. With the aid of cowplenientary published data on the orientation dependence of growth rate, it is shown that this observation is consistent with the oriented-growth theory of recrystallization lextures. It is conclutled that growth-rate and orientation-distribution data obtained in a steep thermal gradient should be used with caution to account for isothermally Produced recrystallization textures. SEVERAL authors have reported methods of growing large grains by re crystallization of a small-grained matrix in silicon iron 1- B and pure a cr The present study was a preliminary in the growth of single crystals and bicrystals for surface relaxation," grain boundary mobility, and grain boundary diffusion studies. The method was to control the growth of a seed crystal into a suitable primary re crystallized matrix by feeding through a steep temperature gradient. The driving energy for growth derived from the grain boundary energy released as the seed crystals grew into the matrix. Thus, stability of the matrix against normal grain growth was considered to be essential for success. It was known that the manganese sulfide dispersion present in commercial silicon iron performs this function during secondary recrystallization to the (110)[001.] texture.12 Hence commercial, rather than high-purity, material was used throughout. The paper describes the growth conditions for grains large enough to be used as seed crystals for further growth into single crystals. The orientation distribution of the seed crystals is analyzed and its significance for the theory of recrystallization textures is discussed. EXPERIMENTAL PROCEDURE Strip material was supplied by the Steel Co. of Wales, Ltd. The chemical analysis in weight percent was Si, 2.90; C, 0.015; Mn, 0.059; P, 0.011; S, 0.027; Ni, 0.032; 0, 0.009; Fe, balance. A gradient furnace of similar design to one described previously4 was loaned from B.I.S.R.A. It consisted essentially of a vertical water-cooled copper slot projecting downwards into the hot zone of a molybdenum furnace. Hydrogen was passed through the furnace to protect both heating element and specimen from oxidation. Strip specimens up to 8 cm wide and 0.2 cm thick were sealed into the furnace at the mouth of the copper slot. A coating of light oil on the strip surface maintained the seal during translation of a specimen. The maximum temperature gradient in the region just below the copper slot was 500°C per cm over 1 cm, with the hottest point controlled at 1175°C. Several large grains would usually grow by secondary recrystallization from the primary matrix when a specimen was immersed in the hot zone for about 30 min. A back-reflection X-ray camera was constructed to facilitate rapid and accurate orientation determinations of the large grains produced. It was possible to reproduce a standard geometry, with regard to strip and camera, without the tedium of careful alignment on each occasion. Specimens, typically 4 cm wide and 75 cm long, were cut with the longitudinal axis parallel to the rolling direction of the original strip. The surfaces were cleaned by immersion alternately in a hot aqueous solution containing 2 pct hydrofluoric acid plus 10 pct sulfuric acid and in cold 10 pct nitric acid. The nitric acid etch was just sufficient to reveal the grain structure. Rolling and annealing treatments to prepare the matrix (discussed below) were followed by growth of seed crystals in the gradient furnace. The matrix was transformed to a single crystal by growth of a selected seed crystal connected to the matrix by a thin neck. 4,5 Growth was promoted by controlled feeding into the gradient furnace. Several single crystals of controlled orientation were grown successfully from seed crystals by twisting the interconnecting neck in a reorien-tation jig.4 EXPERIMENTAL RESULTS AND DISCUSSION Growth Conditions. A suitable matrix for growth of large grains was prepared starting from primary re-crystallized strip 1.9 mm thick. This was cold-rolled in two stages each being followed by a recrystallization anneal at 800°C for a few minutes. Such treatment gave the required growth matrix only if the two cold-reduction stages were each performed in several passes and in the following ranges: the first, 30 to 70 pct; the second, 10 to 50 pct. Immersion in the temperature gradient otherwise resulted in an equiaxed
Citation
APA:
(1967) Papers - Observations on the Orientation Distribution and Growth of Large Grains near (110)[001] Orientation in Silicon Iron StripMLA: Papers - Observations on the Orientation Distribution and Growth of Large Grains near (110)[001] Orientation in Silicon Iron Strip. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.