Part I – January 1968 - Papers - Alloys and Impurity on Temper Brittleness of Steel

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 11
- File Size:
- 816 KB
- Publication Date:
- Jan 1, 1969
Abstract
The interaction of the crlloying eletnenls, nickel and chromium, with the impurity elements, antimony, pIzosphorus, tin, and arsenic, to producse reversible temper brittleness in a series of high-purity steels containing 0.40 wt pct C has been investigated. The alloyed steels contained approximately 3.5 pcl Ni, 1.7 pct Cr, and 0.05 to 0.08 pct of the particular irnpurity to be investigated. Susceptibility to teirlper embrittlement was measured by comparing the notched-bar transition temperature of each steel after quenching from the final temper and after very slow cooling (step cooling;) following the final temper. A plain carbon steel without alloying elements, bu/ ud/h 0.08 pel Sh, does not embrittle when step-cooled through the emzbrittling range of temperatures. The same embrittling treatment, applied to a steel with about the same antinzony content but with nickel and chvonziunz added, causes a 700°C increase in transition temperature. If chromium or nickel is the only alloying element, the increase in transition temperature is only 50%, again with antimony present. A carbon-free iron containing nickel, chromium, and antimony shou~s a 200°C shift in transition temperature for the same thermal treatment. Specific alloy-impurily interactions are also observed for the other impurity elements, phosphorus, tin, and arsenic. Additional investigations involving electron microscopy, trzicrohard-ness tests of vain boundaries, minor additions of zirconiutn and the rare earth and noble metals, nzainly with negative results, are also described. HE particular type of embrittlement investigated is that which is encountered in alloy steels tempered in the temperature range from about 350" to 525'C or slowly cooled through this range of temperatures when tempered above this range. This type of embrittlement is sometimes called reversible temper brittleness to distinguish it from the embrittlement indicated by a minimum in the room-temperature V -notch Charpy energy vs tempering-temperature curve encountered in the range 28 0" to 350°C. Temper brittle-ness seriously restricts the use of many alloy steels since it precludes tempering or use in the embrittling range of temperatures and may significantly raise the ductile-brittle transition temperature of heavy-section forgings and castings tempered above the embrittling range, since such sections cannot be sufficiently rapidly cooled after tempering to avoid embrittlement. The very voluminous literature of temper brittle-ness up to about 1960 has been reviewed by woodfine' and LOW.' Of particular significance to the present investigation was the demonstration by Balajiva, Cook, and worn3 that high-purity Ni-Cr steel does not exhibit temper brittleness and the subsequent detailed and systematic study by Steven and Balajiva~ of the effect of impurity additions on the susceptibility to embrittlement of Ni-Cr steels. Steven and Balajiva showed that, of the impurities which may be found in commercial steels, Sb, As, P, Sn, Mn, and Si could all produce temper brittleness in a high-purity Ni-Cr steel. The principal purpose of the present investigation was to study the effects of particular alloy-impurity combinations on susceptibility to temper embrittlement. The steels used were high-purity 0.30 to 0.40 wt pct C steels containing 3.5 wt pct Ni and 1.7 wt pct Cr, separately or in combination. The susceptibility of these steels was then determined when approximately 500 ppm by weight of antimony, arsenic, phosphorus, or tin were added as an impurity. The melting, casting, and forging practices used in the preparation of the materials investigated are described in Appendix A. Table A-I in this appendix shows the analysis of all steels to be discussed. The steels were produced as 20- or 2-lb heats. The smaller heats were used after it had been demonstrated (see Appendix B) that a small, round, notched test specimen could be used to measure the shift in the ductile-brittle transition temperature caused by temper brittleness with about the same result as that obtained by Charpy testing. HEAT TREATMENT Unless otherwise noted, all steels were tested for embrittlement in the tempered martensitic condition. A typical heat treatment for a 0.40 C, 3.5 Ni, 1.7 Cr steel was: 1 hr at 870"C, in argon, quench into oil at 100"C, quench into liquid nitrogen, temper 1 hr at 625"C, and water-quench. The warm oil quench was used where quench-cracking was encountered; otherwise the initial quench was into room-temperature oil or water. For other compositions austenitizing temperatures were 50°C above Acs with the remainder of the thermal cycle the same. Steels in this condition, with no further heat treatment, are designated as non-embrittled. The above quenching and tempering cycle for the 0.40 pct C steels resulted in as-quenched hardnesses of 48 to 53 RC and as-tempered hardnesses of 24 to 31 Rc except in the case of the plain nickel or plain carbon steels. In these, the as-tempered hardness was as low as 80 to 90 Rg. No attempt was made to adjust the tempering temperature to obtain the same hardness in ali steels since it was felt that a uniform thermal cycle was more important than exactly equivalent hardness values. Pro- the standard quench and temper described above, the standard embrittling treatment was "step-cooling". For this the thermal cycle was: 593"C, 1 hr; furnace-cool to 538"C, hold 15 hr; cool to 524"C, hold 24 hr; cool to 496"C, hold 48 hr; cool to 468'C, hold 72
Citation
APA:
(1969) Part I – January 1968 - Papers - Alloys and Impurity on Temper Brittleness of SteelMLA: Part I – January 1968 - Papers - Alloys and Impurity on Temper Brittleness of Steel. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.