Part I – January 1968 - Papers - Identification of Tellurium or Selenium Phase in V2Vl3+x Alloys by Metallography

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 457 KB
- Publication Date:
- Jan 1, 1969
Abstract
Chemical etching methods for the simultaneous revealing of the tellurium or selenium Phase and the chalcogenide grain boundaries of the alloy systems are given. A tellurium eutectic was found Present in zone-melted ingots. Similarly, a selenium monotectic was present in ingots. In general, the second phase (tellurium or seleniumn) occubies three different sites; viz., along the chalcogenide grain boundaries, as inclusions within the chalcogenide grain, and on the undersurface of the ingot. The detection limit for the tellurium phase is about 1 u in width. THERMOELECTRIC materials based on Group V (bismuth, antimony) and Group VI (selenium, tellurium) elements have aroused considerable interest in recent years in the practical application of thermoelectric cooling. In many cases, a small amount of excess tellurium (or selenium) was added to the material to optimize its thermoelectric properties. Then the question immediately arises as to the number of phases present in the resultant alloy. In the binary systems of Bi-Te, Sb-Te, and Bi-Se, the congruent melting compositions have been reported to be non-stoichiometric and are represented by Bi~Te respectively. It is to beexpected and known that Bi2Te3 and SbzTe3 crystallize from the melt with an excess of bismuth and antimony in the lattice and that tellurium forms a eutectic.~' The same could be assumed to take place in the pseudo binary systems of (Bi,Sb)zTe3 and Bi2(Se,Te)3 as well as in the system studiedby puotinen5 and other workers. Likewise, BiaSe3 crystallizes from the melt with an excess of bismuth in the lattice and selenium forms a monotectic.~ Therefore, in practice, alloys solidified from the melt often contain a second phase (tellurium or selenium) in one region or another of the solid mass even without the addition of excess tellurium (or selenium). ~u~~recht' studied the thermoelectric properties of (Bi,Sb)2Te3 alloys with excess tellurium and simultaneous additions of selenium. He mentioned that the materials show two phases because of the considerable excess of tellurium or selenium. However, he did not report as to how the tellurium or selenium phase was identified. It is generally believed that the presence of an excessive amount of tellurium or selenium phase in the alloy would adversely affect its thermoelectric properties and its uniformity. Consequently, there is a need for a simple method for the identification of the tellurium and selenium phase. The quantity of the second phase present is usually too small to be detected either by chemical analysis or by normal X-ray techniques. This investigation was therefore carried out, first, to devise a simple metallographic method for the identification of the tellurium or selenium phase coexisting with the chalcogenides and, second, to determine the distribution and specific location of the tellurium or selenium phase in the ingots. EXPERIMENTAL PROCEDURE The starting materials used for the alloy preparations were 99.999 pct pure bismuth, antimony, and tellurium and 99.997 pct pure selenium. The bismuth and antimony were obtained from Consolidated Mining and Smelting Co. of Canada Ltd., while the selenium and tellurium were obtained from Canadian Copper Refiners Ltd. The tellurium was purified further in the laboratory by zone refining. The elements were pulverized in a stainless-steel pestle and mortar. The amounts for the desired composition were weighed out each time on an analytical balance to make up a 100-g sample. Then the sample was introduced into a Vycor ampule (19 by 150 mm), pumped down to a vacuum of 10"5 Torr for 15 min, and sealed off. The ampule was then heated in a horizontal resistance furnace at 800" to 900°C for about 20 hr. During this period the assembly was rocked back and forth several times to ensure good mixing. At the end of the heating period, the ampule was quenched in cold water and then transferred to the zone-melting apparatus described in a previous publications to grow large-size aligned polycrystals. The background and ring-heater temperatures were adjusted to make the freezing solid-liquid interface slightly convex to the liquid. The recorded temperature gradient in the vicinity of the freezing solid-liquid interface was around 15°C per cm. The ampule was moved horizontally at a speed varying from 0.4 to 2 cm per hr so that the ring heater would cover the whole ingot length from end to end. A single zone-melting pass was used for the Bi-Te, Sb-Te, and Bi-Sb-Te ingots. Two passes in the forward and reverse directions were carried out for the Bi-Se and Bi-Se-Te ingots. Six passes in the forward and reverse directions were performed for the Bi-Sb-Se-Te ingot. The zone-melted ingots were found to contain several large crystals, with their basal planes (0001) approximately parallel to the growth axis. Samples of bismuth and antimony tellurides coated with a layer of tellurium, and bismuth selenide coated with a layer of selenium, were prepared for comparison in phase identification. These coatings were made by dropping a piece of the zone-melted ingot into some molten tellurium or selenium under argon atmosphere and allowing them to cool slowly to room temperature. The metallographic specimens were prepared by
Citation
APA:
(1969) Part I – January 1968 - Papers - Identification of Tellurium or Selenium Phase in V2Vl3+x Alloys by MetallographyMLA: Part I – January 1968 - Papers - Identification of Tellurium or Selenium Phase in V2Vl3+x Alloys by Metallography. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.