Part I – January 1968 - Papers - The Relative Magnitudes of the Extrinsic and Intrinsic Stacking Fault Energies

The American Institute of Mining, Metallurgical, and Petroleum Engineers
P. C. J. Gallagher
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
292 KB
Publication Date:
Jan 1, 1969

Abstract

A number of recmt determinations for the ratio of extrinsic to intrinsic stacking fault energy in fcc solid solutions are examined. Some of these arise from incomplete analyses which can yield only approxi?nate values for the ratio. Reliable results, on the other hand, obtained using extrinsic-intrinsic fault pairs, show that the extrinsic and intrinsic fault energies are essentially equal in several materials. There is some reason to believe that this finding is of general applicability to fcc elements and alloys. A wide range of values has been obtained for the relative magnitudes of the extrinsic and intrinsic stacking fault energies (yext and yint, respectively) in recently published studies in a variety of materials. In contrast, Hirth and Lothe' using a central force model have shown that out to tenth nearest-neighbor interactions the perturbation in energy caused by both types of fault is the same. Although the model used is not completely valid in metals, there is nevertheless some indication that marked variations of yext/nnt should not be observed from one material to another. In early work in Cu-A1, Cu-Ge, Ni-Co, and stainless steel all the deformation faults observed in the electron microscope were found to be intrinsic in nature, which led to an attitude that the extrinsic fault energy must be considerably greater than the intrinsic. Extrinsic faulting arising from deformation has, however, more recently been directly observed in Au-4.8 at. pct n;~ Ag-6 at. pct Sn and Ag-8 at. pct sn; Ag-7.5 at. pct In and Ag-11.8 at. pct 1n;"' pure silwer and Ag-0.5 at. pct ~n;' and Cu-22 at. pct Zn, Cu-30 at. pct Zn, and Cu-7.5 at. pct ~1.l' Multilayer loops containing extrinsic faulting have also been observed in quenched aluminum." While peak asymmetries in X-ray faulting probability studies were generally attributed to the presence of twins,Lelel2 has recently reinterpreted earlier X-ray data in Ag-Sb alloysU in terms of the presence of extrinsic faulting. The determinations of yeXt/yint made from the above studies are shown in Table I, with a brief description of the techniques employed. A number of the methods utilized are deficient in one or more respects, and the reliability of the values listed will be discussed. ~ele'~ recognizes that his approximate determinations of yext/yint assumes equal numbers of extrin-sically and intrinsically faulted dislocations. It is well-known, however, that such an assumption is not at all justified since extrinsic faulting has but rarely been observed in samples studied in the electron microscope. The only conclusion that should be drawn from the X-ray results at present is that the total intrinsic scattering cross section (i.e., the product of the width of the intrinsically faulted dislocations with their density) is approximately ten times greater than for extrinsic faulting in these particular samples. An important point is that the relative magnitudes of the energies cannot be inferred from results of this type, unless the intrinsic and extrinsic faults form with equal ease. One must recognize that, although a formation barrier may restrict the amount of extrinsic faulting which occurs, this in no way implies that the extrinsic and intrinsic energies should be different. It is unlikely that a worthwhile estimate of the relative densities of extrinsically and intrinsically faulted dislocations can be made at the high deformations present in X-ray samples. ~oretto,'~ from a statistical argument applied to the nonobservation of extrinsically faulted tetrahedra out of a large sample, concluded that yeXt/yint could not be less than -4.5. However, the present author feels that a high-energy formation barrier as just supposed also explains this finding satisfactorily and that no conclusion can possibly be drawn concerning the actual extrinsic stacking fault energy. The same argument also serves to explain the fact that extrinsic faulting has been relatively little observed in the electron microscope. Extrinsic-intrinsic node pairs and isolated extrinsic nodes were first reported by Loretto~ and subsequently by Ives and Ruff,' Gallaher,' and Gallagher and Wash-burn.' Ives and Ruff' found a wide spread in the ratio of extrinsically to intrinsically faulted area in the node pairs they observed, and drew the very tentative conclusion that yeXt/yint 2 2. They recognized that a straightforward comparison of the size of the faulted areas could provide no more than a qualitative result without a theoretical analysis of the dislocation geometry associated with extrinsic faulting. A theoretical
Citation

APA: P. C. J. Gallagher  (1969)  Part I – January 1968 - Papers - The Relative Magnitudes of the Extrinsic and Intrinsic Stacking Fault Energies

MLA: P. C. J. Gallagher Part I – January 1968 - Papers - The Relative Magnitudes of the Extrinsic and Intrinsic Stacking Fault Energies. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account