Part II – February 1968 - Papers - Kinetics of Austenite Formation from a Spheroidized Ferrite-Carbide Aggregate

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 10
- File Size:
- 855 KB
- Publication Date:
- Jan 1, 1969
Abstract
The rate of dissolution of cementite was studied in three low-carbon materials: a zone-refined Fe-C alloy, an Fe-0.5pct Mn-C alloy, and a commercial low-carbon steel. The materials were spheroidized, ad then held isothermally at temperatures above the Al. The isothermal anneal was interrupted periodically by a water quench and the specimens were analyzed by quantitative metallography for the amount of aus-tenite formed during the anneal. The results of this study were compared with an analytical model for the process, which assumes that carbon diffusion in aus-tenite is the rate-controlling step for the cementite dissolution process. The correlation between the model and the experimental data is excellent for the zone-refined Fe-C alloys; however, the Fe-0.5 pct Mn-C alloys and the commercial steel deviate from the calculated model. This deviation is thought to be a result of manganese segregation between the carbide and the matrix. The rate of nucleation of austenite at carbide interfaces was reduced by the manganese addition and enhanced by the presence of ferrite-ferrite grain boundaries. PREVIOUS investigations of the nucleation and growth of austenite from ferrite-carbide aggregates are not entirely satisfying for at least one of several reasons. The most prevalent of these is a lack of quantitative data. Engineering studies have been run on many steels with little control over important parameters such as composition and initial aggregate structure. The data obtained are valid only for material with identical chemistry and thermal history. A more informative approach to the problem of aus-tenitization would be to determine the mechanism that controls the rate of solution of carbide in austenite and how it is modified by alloying elements. This information could then be used to calculate an austeniti-zation rate for any material, provided its composition and structure are known. The object of the present work is to establish the rate-controlling step for cementite dissolution in Fe-C austenite and to investigate the modification of this rate by small manganese additions. The composition and structure of the material used were carefully controlled and all measurements were designed to allow a quantitative analysis of the kinetic process that controls the austenitization rate. A MODEL FOR DISSOLUTION OF CEMENTITE Cementite dissolution has been analyzed mathematically by a model that approximates the material used in the experiments. This model postulates a regular ar-array of identical cementite spheroids with 4 C( diam, embedded in a grain boundary- free ferrite matrix. The analysis provides a detailed description of the dissolution of one carbide spheroid and a generalization of the solution by summation over all the carbides in the material. The carbides may be isolated by defining identical, space-filling cells of ferrite around them. If the cell dimensions are greater than the diameter of the austenite sphere resulting from complete dissolution of the carbide, and no interaction (through diffusion in ferrite) takes place between cells during the dissolution process, the model need concern only one cell, since the solution in each cell is identical. In the experimental material, the dimensions of the cell, the carbide, and the final austenite sphere are approximately 24, 4, and 8 p, respectively; use of the single cell is therefore justified. The experimental observations are made on the austenite nodules that form around each carbide during the dissolution process. The model concerns the growth of these austenite nodules. The attendant shrinking of the carbide can be obtained from the same analysis by an extension of the calculations. Several a priori assumptions are necessary to make the analysis of the growth problem tractable. They are: 1) carbon diffusion through the austenite nodule is the rate-controlling process; 2) local equilibrium exists at all interfaces, 3) the austenite nucleus that forms on each carbide instantaneously envelops the carbide; 4) during the austenite growth process, the diffusion flux of carbon in ferrite is insignificant; 5) a quasi-steady state exists in the austenite concentration field; that is, at any instant during the dissolution process, the austenite carbon concentration gradient closely approximates that for a steady-state solution; and 6) the effects of capillarity on the dissolution rate of the carbides can be neglected. Referring to Fig. 1, a mass balance at the y-a interface for an infinitesimal boundary movement gives: Where rb is the outer radius of the austenite shell, C1 and C are carbon concentrations at the interface in austenite and ferrite, respectively, see Fig. 2, is the diffusion coefficient of carbon in austenite for the concentration of carbon at the interface, and t is time. The fifth assumption permits the austenite carbon concentration to be approximated by the Laplace solution for the spherical case. Therefore, where C(Y) is the carbon concentration at r, and A and B are constants. Local interfacial equilibrium fixes the boundary conditions for the diffusion problem. They are:
Citation
APA:
(1969) Part II – February 1968 - Papers - Kinetics of Austenite Formation from a Spheroidized Ferrite-Carbide AggregateMLA: Part II – February 1968 - Papers - Kinetics of Austenite Formation from a Spheroidized Ferrite-Carbide Aggregate. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.