Part II – February 1969 - Papers - Close-Packed Ordered AB3 Structures in Binary Transition Metal Alloys

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Ashok K. Sinha
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
753 KB
Publication Date:
Jan 1, 1970

Abstract

During the course of an in~*estigation into the occurrence of ordered AB3 structures, the following new phases have been found —CrRh3 (AuCu3 type), CrCo3 (MgCd3 type), HfCo4 (Ths Mn23 type), and WPt, MoPh type). The composition of the TiPt3-x phase (TiNi, type) is close to Ti23Pl77. The alloy chenzistry of transition rnetal AB3 structures is rezliewed in the light of electron concentration correlations of hex-agonality recently obtained for quasi-binary alloys. The relatizte colurne contraction in the AB3 structures increases with increasing difference in volume of the conzponents. A family of ordered close-packed layered structures is formed by stacking identical layers of composition AB, in various sequences, such that the coordination is twelvefold throughout and there are no A-A contacts. Previous work' on quasi-binary AB3 alloys has led to the conclusion that the stacking sequence of the AB, structures changes with increasing radius ratio RA/RB from a purely cubic, through different mixtures of hexagonal and cubic stacking to a purely hexagonal stacking. However. for binary AB3 alloys, a correlation between the type of the crystal structure and the position of the components in the various volumns of the periodic table has been noted.2-5 It has been noted6 that this correlation appears to hold even though the radius ratio RA/RB may vary over a considerable range with the location of the components in the three long periods. Another study7" of several quasi-binary systems led to the conclusion that an increase in hexagonality of the stacking is associated with increase in the electron concentration e/a. as defined by the average per atom of the total number of electrons outside the inert gas shells. In apparent conflict with this conclusion, it is known that seven binary alloy structures isotypic with TiNi3 which is 50 pct hexagonal occur at a higher electron concentration (e/n = 8.5) than that (e/a = 8.25) for the 100 pct hexagonal MgCd3 type structure present in seven binary AB3 alloys. Table 111. In the present work, an investigation into the occurrence of binary AB3 structures in transition metal alloys was made, and a survey of binary AB3 structures is presented. EXPERIMENTAL The starting materials were pure metals of 99.9 wt pct purity. The alloys were arc-melted under partial pressure of argon and annealed in sealed silica capsules lined with molybdenum foil under argon at- mosphere. The total weight loss upon melting and subsequent annealing was always less than 1 pct and hence the alloys will be referred to by their intended (unanalyzed) compositions. Wherever the constitution permitted. the alloys were given a homogenizing treatment at 1200°C (3 days) prior to annealing. Unless otherwise stated all alloys were annealed at 900°C for 1 week and water-quenched. Sometimes the final annealing treatment was carried out on powders to accelerate the attainment of equilibrium. X-ray powder patterns were taken using a Guinier-de Wolff focusing camera (CuK, radiation) or an asymmetrical focusing camera (Co or CrK, radiation). For lattice parameter determination. internal silicon standards were employed. The intensity calculations were made using a Fortran IV program written by Jeitschko and parthe.9 RESULTS Twenty AB3 and three AB4 alloys were investigated. Table I lists the crystallographic data on some of the intermediate phases encountered in the present work. Table II contains the X-ray data for HfCo, (Th,,Mn,, type). The positional parameter, x. was assumed to be 0.378. the value for Th6Mnn2310 The X-ray pattern of ZrCo, was very similar to that of HfCo, and the previous structure determination of ZrCo, by Kuzma el al." was confirmed. Ordering in the alloy CrCo could be ascertained by the presence of only one weak super lattice line (101). the others being too weak presumably owing to the small difference in the scattering powers of chromium and cobalt. This line was observed in the X-ray pattern of powder from the massive sample annealed at 830°C (7 days) after the powder had been reannealed at 600°C (24 hr). The diffraction pattern of the powder similarly reannealed at 830°C (24 hr) contained only the lines due to a mixture of hcp and fcc Co(Crj solid solutions. Therefore, it appears reasonable to assume that O2 and/or N2 contamination which would be less likely to occur during the 600°C anneal was not responsible for the observed weak reflection. Also. this reflection cannot be identified with any of the strong lines of the neighboring s phase which is present in the Co-Cr system at higher chromium contents. The composition corresponding to the TiNi3 structure observed by Raman et al.12 in the two-phase alloy Ti,zt,, has been established in the present work as being between There was satisfactory agreement for the low-angle lines (up to d = 1.997A) between the observed diffraction pattern of TiCua and that calculated assuming the ZrAu, structure. as recently proposed by Pfeifer-et a1.I3 However. some of the superlattice lines. e.g., at d = 1.937 and 1.919A. predicted by the ZrAu, structure were not actually observed eve? though neighboring lines. at d = 1.947 and 1.986A. of comparable calculated intensity were present. The ZrAu
Citation

APA: Ashok K. Sinha  (1970)  Part II – February 1969 - Papers - Close-Packed Ordered AB3 Structures in Binary Transition Metal Alloys

MLA: Ashok K. Sinha Part II – February 1969 - Papers - Close-Packed Ordered AB3 Structures in Binary Transition Metal Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account