Part II – February 1969 - Papers - Intermediate Compound Ni8Nb(Cb) in Nickel-Rich Nickel-Niobium (Columbium) Alloys

The American Institute of Mining, Metallurgical, and Petroleum Engineers
W. E. Quist C. J. van der Wekken R. Taggart D. H. Polonis
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
1022 KB
Publication Date:
Jan 1, 1970

Abstract

An intermediate compound that has been identified as Niab is observed to form as a decomposition product from supersaturaled Ni-Nb solid solutions during aging at temperatures between approximately 300" and 500°C. On the basis of data from electron microscopy and selected-area diffraction, the structure of this compound has been determined as fct with a = b - 3a0 and c = a, wlzere a,, is the lattice parameter of the parent solid solution. The compound consists of close-packed layers with triangular ordering, where the niobiutrl atoms are separated by two nickel atoms ([long- close?-packed directions. A nine layer stacking sequence is required to describe the proposed structure. STUDIES of the Ni-Nb binary system have been limited primarily to phase diagram determinations,'-4 investigations of high-temperature equilibrium phases,5"1 and the determination of the influence of deformation on the structure of the equilibrium compound.8 The nickel-rich portion of the binary system is reported to be of the simple eutectic type in which the maximum solubility of 12.7 at. pct Nb occurs at 1282"c.' The two-phase field below the eutectic temperature is bounded by the a fcc solid solution and an orthorhombic Ni3Nb compound. No metastable phases have been reported in previous investigations. In transformation studies of certain nickel-base commercial alloys that contain niobium, two ordered metastable compounds containing niobium have been shown to precipitate from the solid solution, both of which have been identified as y' and have the composition NisNb or Ni,Nb. One compound has been reported to have the bct DOz2 type Al3Ti structure" and the other the cubic LI2 type Cu3Au structure.9,11 In the present work on Ni-Nb binary alloys a metastable y' compound has not been detected after conventional quenching and aging treatments. An anomalous behavior was noted in electrical resistivity measurements. in alloys containing between 7 to 12 at. pct Nb when aging treatments were performed below 500°C after fast quenching from 1250°C. Transmission electron microscopy has shown that this behavior is caused by the formation of a low-temperature precipitate of unreported structure type and composition. EXPERIMENTAL METHODS Several Ni-Nb alloys, containing up to 11.5 at. pct Nb. were prepared by either levitation melting and casting in copper molds or by induction melting in alumina crucibles; both techniques employed purified helium gas as a protective atmosphere. The purity of the nickel and niobium used to make the alloys was 99.98 wt pct Ni and 99.9 wt pct Nb. The composition and homogeneity of the alloys were checked by weight measurements and by electron microprobe analysis. The induction-melted alloys were homogenized for 100 hr at 1100°C. The resistivity specimens were prepared from rods swaged to 2.5 mm and the electron microscopy specimens were cut from sheet that was rolled to 0.4 mm and thinned using a modified Bollmann technique." The elevated-temperature solution treatments were carried out in a purified helium atmosphere followed by direct quenching into a 10 pct NaCl solution at 23°C. Additional protection against oxidation of the samples during solution treatment was accomplished by using tantalum foil as a "getter" in the furnace. The specimens were aged at various temperatures in salt baths controlled to +2oC. A Leeds and Northrup K5 potentiometer was used to make electrical resistivity measurements on specimens immersed in liquid nitrogen. Electron microscopy and diffraction studies were carried out with JEM-7 and Philips EM-200 microscopes operating at 100 kv. RESULTS AND DISCUSSION Ni-Nb alloys containing between 7 and 11.5 at. pct Nb that have been solution-treated in the range 1220" to 1280°C and quenched to 23°C undergo a precipitation reaction when aged in the temperature range 300" to 500°C. Precipitation was detected by selected-area electron diffraction after aging a specimen for as little as 30 sec at 350°C) whereas the reaction was well-advanced after aging for 150 hr at 475°C. Electrical resistivity measurements were used to monitor the progress of the precipitation reaction. In the present experiments the nucleation process for precipitation required a high solution temperature and a rapid quench into brine. The presence of aluminum, iron? and carbon in amounts totaling less than 1 wt pct was found by electron diffraction to completely suppress the formation of the low-temperature precipitate that has been detected in the binary alloy. Electron diffraction techniques were used to determine the structure of the precipitates that formed during the decomposition of the Ni-Nb supersaturated solid solutions. Figs. l(a) through l(d) show electron diffraction patterns oriented to the [loo], [110], [lll], and [I031 zone axes of the matrix. Areas of reciprocal space between these sections were investigated by slowly varying the orientations of the crystal under study; this procedure revealed no reflections other than those depicted in Fig. 1. The presence of super-lattice reflections at points coincident with the matrix reflections was confirmed by the examination of an almost completely transformed structure. On the basis of the accumulated diffraction data, the reciprocal lat-
Citation

APA: W. E. Quist C. J. van der Wekken R. Taggart D. H. Polonis  (1970)  Part II – February 1969 - Papers - Intermediate Compound Ni8Nb(Cb) in Nickel-Rich Nickel-Niobium (Columbium) Alloys

MLA: W. E. Quist C. J. van der Wekken R. Taggart D. H. Polonis Part II – February 1969 - Papers - Intermediate Compound Ni8Nb(Cb) in Nickel-Rich Nickel-Niobium (Columbium) Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account