Part III – March 1968 - Papers - A Survey of Radiative and Nonradiative Recombination Mechanisms in the III-V Compound Semiconductors

The American Institute of Mining, Metallurgical, and Petroleum Engineers
P. J. Dean
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
17
File Size:
1298 KB
Publication Date:
Jan 1, 1969

Abstract

This Paper contains a comprehensive survey of the known electron-hole radiative recombination mechanisms in the family of III-V compounds. Because of space limitations, the luminescence properties of each III- V compound are not reviewed separately and exhaustively. Instead, the different known types of recombination processes are discussed in turn and exemplified with reference to the III- V compound in which they were first recognized, or are best understood. Electron-hole recombinations usually occur predominantly at impurities or lattice defects either introduced de1iberately or inadvertently present, but radiative intrinsic interband electron-hole recombinations, which occur in perfect crystals, have been observed. Recombination processes which involve the participation of impurities or lattice defects ("extrinsic" recombinations) considered include transitions in which a) free carriers recombine with carriers trapped at impurities ("free to bound" transitions) , b) electrons bound at donor impurities recombine with holes trapped at acceptor impurities ("donor-acceptor pair" recombinations), C) excitons bound to charged or neutral donor or acceptor impurities recombine radiatively (both "resonance" and "two-electron" "bound exci-ton" transitions have been observed), d) excitons bound to neutral donor or acceptor impurities recombine non-radiatively (an example of an "Auger" recombination), and e) excitons bound to impurities with the same number of valence electrons as the host atom which they replace ("isoelectronic " traps) recombine radiatively. In addition, Auger recombination processes involving one or more free carriers have been observed. These extrinsic processes all involve impurities which are present as point defects. Some apparently well-authenticated examples of the recombination of excitons bound to complex impurity-lattice defect centers including nearest-neighbor donor-acceptor pairs are also discussed. Identificalions of the transitions involved in stimulated emission from the direct gap III-V compounds are briefly reviewed. Although the examples of these recombination mechanisms are selected from the III-IV compounds ia this review, these processes have quite general relevance in semiconducting crystalline solids; irrdeed most of them have also been identified in the 11- VI compounds and elernental semzconductors. THE development of crystal growth and purification techniques in recent years and concurrent advances in the understanding of physical processes in solids has accelerated the development of a wide variety of solid-state electronic devices of proven utility. These de- vices are generally used for switching or amplifying operations in electrical circuits. Most solid-state circuit elements are very photosensitive. This photo-sensitivity is generally undesirable and the single-crystal chip forming the active portion of the solid-state device is mounted in an opaque container. The photosensitivity is made use of in phototransis-tors and photodiodes, which are among the most sensitive detectors of electromagnetic radiation particularly in the near infrared.' In these devices, light is converted into electrical power. The solid-state lamp utilizes the inverse effect, namely the conversion of electrical power into light. There is an increasing tendency to use single-crystal diodes rather than the earlier electroluminescent cells in which the active material is present as a powder embedded in a suitable dielectric.' The radiation is emitted at a rate far in excess of the thermal equilibrium rate for the frequencies and temperatures involved; i.e., luminescence occurs. The development of practically efficient solid-state lamps is at an early stage compared with solid- state circuit elements or even photodetectors. Considerable progress has been made in recent years, however.3 The present review is devoted to a survey of the radiative recombination processes in the semiconducting compound crystalline solids formed from elements in groups I11 and V in the periodic table. These materials exhibit the full range of known recombination processes in solids. In fact many of these processes were discovered in 111-V semiconductors. Nonradiative recombination processes, which control the lutninescence efficiency, are also discussed. Luminescence is efficiently excited in semiconductors through processes which produce large excess concentrations of free electrons and holes in the energy bands of the crystal. Transitions induced by lattice defects or impurities usually predominate in the recombination process. By contrast, luminescence in the conventional fluorescent lamp is excited by optical absorption at the luminescent impurity center itself (the activator) and/or at a second type of impurity center (the sensitizer). This latter type of photoluminescence process, occurring in doped ionic crystals with wide band gaps, is outside the scope of this review.4 I) ENERGY BAND DESCRIPTION OF ELECTRON STATES IN CRYSTALS The energy band description of the energy states available to an electron in a crystal forms the basis of our understanding of the empirical division of crystalline solids into metals, semiconductors, and insulators in accordance with their electrical and optical properties.' Nonmetallic crystals have a finite energy gap between the highest energy band which is
Citation

APA: P. J. Dean  (1969)  Part III – March 1968 - Papers - A Survey of Radiative and Nonradiative Recombination Mechanisms in the III-V Compound Semiconductors

MLA: P. J. Dean Part III – March 1968 - Papers - A Survey of Radiative and Nonradiative Recombination Mechanisms in the III-V Compound Semiconductors. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account