Part III – March 1968 - Papers - Crystal Growth, Annealing, and Diffusion of Lead-Tin Chalcogenides

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. R. Calawa T. C. Harman M. Finn P. Youtz
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
10
File Size:
681 KB
Publication Date:
Jan 1, 1969

Abstract

A study has been made of the growing, annealing, and diffusion parameters in PbSe, Pb1-ySnySe, and Pb1-xSnxTe. Single crystals of these materials have been grown using the Bridgman technique. For all of the above materials the as-grown crystals are p type with high carrier densities. To reduce the carrier concentration and increase the carrier mobility, the samples are annealed either isothermally or by a two-zone method. From isothermal anneals, the liquidus-solidus boundary on the metal-rich side of the stoichiometric composition has been obtained for some alloys of Pb1-xSnxTe and on both the metal- and seleniunz-rich sides for PbSe and alloys of Pbl-ySnySe. In Pbo.935 Sno.065 Se carrier concentrations as low as 5 x1016 Cm-3 and mobilities as high as 44,000 sq cm v-1 sec-1 at 77°K have been obtained. Inter diffusion parameters mere also studied. The ddiffusion experiments mere identical to the isothermal or two-zone annealing experiments except that the samples were removed prior to complete equilibration. The resulting p-n junction depths were determined by sectioning and thermal probing. Inter diffusion coefficients for various temperatures were calculated for both PbSe and Pb0.93Sn0.0,Se. RECENTLY, there has been considerable interest in the PbTe-SnTe and PbSe-SnSe alloys with the rock salt crystal structure. The unusual feature of these systems is the variation of energy gap EG with composition. Several investigations1-3 have shown that EG for the lead chalcogenides decreases as the tin content increases, goes through zero, and then increases again with further increase in tin content. The possibility of obtaining an arbitrary energy gap by selecting the composition is an especially attractive feature of these alloys for applications involving long-wavelength infrared detectors and lasers. In addition, some unusual magneto-optical, galvanomagnetic, and thermomag-netic effects should occur for alloys with low band gaps. If uncompensated low carrier density crystals can be obtained, then a small carrier effective mass, a large dielectric constant, and the resultant high carrier mobility should yield enormous effects at low temperature in a magnetic field. The relative variation of the energy gap with pressure should also be very large for these low gap materials. The primary purpose of this paper is to provide some information concerning the preparation of low carrier concentra- tion, high carrier mobility, and homogeneous single crystals with a predetermined alloy composition. I) DETERMINATION OF ALLOY COMPOSITIONS In all of the work described in this paper, the composition of lead and tin chalcogenides in the alloys was determined by electron microprobe analysis. Separate X-ray spectrometers are used to make simultaneous intensity measurements of the Pb La1 and Sn La1 lines emitted by the sample under excitation by a beam of 25 kev electrons focused to a spot about 2 µm in diam. These intensities are compared to the intensities of the same lines emitted by standards under the same conditions. The standards used are the terminal compounds of each pseudobinary system, i.e., PbTe and SnTe for Pbl-xSnxTe alloys, PbSe and SnSe for Pbl-ySnySe alloys. The composition of the sample is then obtained from theoretical calibration curves which relate the weight fractions of lead and tin in the alloy to the measured ratios of X-ray intensities for the sample and the standards. The lead and tin calibration curves for each alloy system were calculated by using corrections for backscattered electrons,4 ionization,5 and absorption,6 and assuming that the atom fraction of tellurium or selenium in the sample and standards is exactly +. Results obtained by using the microprobe are in good agreement with those obtained by wet chemical analysis. II) CRYSTAL GROWTH FROM THE VAPOR Early work on the vapor growth of PbSe was carried out by Prior.7 He used small chips of Bridgman-grown single crystals as the source material and frequently converted the whole charge of a few grams into one crystal. In the present work, vapor growth occurred using a metal-rich or chalcogenide-rich two-phased alloy powder as the source material. Small, nearly stoichiometric crystals are formed on the walls of the quartz tube. The procedure will now be described in detail. Initially, a 100-g charge containing (metal)o.51(chalco-genide)o 49 proportions or (metal)o.49(chalcogenide)o. 51 proportions of the as-received elements in chunk form are placed in a fused silica ampoule. After the ampoule is loaded, it is evacuated with a diffusion pump and sealed. The sealed ampoule is placed in the center of a vertical resistance furnace. The region containing the ampoule is heated to about 50°C above the liquidus temper-ature for the particular composition used. After about one-half hour at temperature, the elements are reacted and the molten material homogenized. The ampoule is quenched in water. The quenched ingot is crushed to a coarse powder for vapor growth experiments and to a fine powder for the isothermal annealing experiments which are discussed in a later section. Vapor growth experiments were carried out using the powdered, metal-rich or chalcogenide-rich alloys
Citation

APA: A. R. Calawa T. C. Harman M. Finn P. Youtz  (1969)  Part III – March 1968 - Papers - Crystal Growth, Annealing, and Diffusion of Lead-Tin Chalcogenides

MLA: A. R. Calawa T. C. Harman M. Finn P. Youtz Part III – March 1968 - Papers - Crystal Growth, Annealing, and Diffusion of Lead-Tin Chalcogenides. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account