Part III – March 1968 - Papers - Silica Films by the Oxidation of Silane

The American Institute of Mining, Metallurgical, and Petroleum Engineers
T. L. Chu J. R. Szedon G. A. Gruber
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
602 KB
Publication Date:
Jan 1, 1969

Abstract

Amorphous adherent filnzs of silicon dioxide have been deposited on silicon substrates by the oxidation of silane at temperatures ranging from 650 to 1050C. Various diluents (argon, nitrogen, hydrogen) were used to suppress the formation of SiO2 in the gas phase. Deposition rates of the oxide were determined over the temperature range in question as functions of' re-actant flow rates. Etch rate studies were used for a cursory comparison of structural properties of deposited and thermally grown oxides. From electrical evaluation of metal-insulator-silicon capacitors it was determined that the interface charge density of deposited films is similar go that of dry-oxygen-grown films in the 850° to 1050 C temperature range. Deposited films exhibit several ionic instability effects which differ in detail from those reported for thermal oxides. Stable passivating films of silicon nitride over deposited oxides appear to be practical for use in silicon planar device fabrication. Such films can be prepared under temperature conditions which have less effect on substrate impurity distributions than in the case of grown oxides. AMORPHOUS silicon dioxide (silica) is compatible with silicon in electrical properties and is the most widely used dielectric in silicon devices at present. Silica films can be prepared by the oxidation of silicon or deposited on silicon or other substrate surfaces by chemical reactions or vacuum techniques. The ability of thermally grown silicon dioxide films to passivate silicon surfaces forms one of the practical bases of the planar device technology. Properly produced and treated films of grown SiO 2 can have low densities of interface charge (-1 X 10" charges per sq cm) and can be stable as regards fast migrating ionic sgecies. 1 To maintain these properties, even with an otherwise hermetically sealed ambient, the Sia layers must be at least l000 A thick. Such thicknesses require oxidation in dry oxygen for periods of 7.8 hr at 900°C or 2 hr at 1000°C. Although oxidation in steam or wet oxygen can reduce these times to 17 and 5 min, the resulting oxides must be annealed to produce acceptable levels of interface charge., Oxidation or annealing involving moderate to high temperatures for extended periods of time can be undesirable. Under some conditions, there can be changes in the distribution of impurities within the underlying substrate. A chemical deposition technique using gaseous am-bients is particularly attractive and flexible for preparing oxide films. With a wide range of deposition rates available, films can be produced under condi- tions of time and temperature less detrimental to impurity distributions in the silicon than in the case of thermal oxidation. The pyrolysis of alkoxysilanes, the hydrolysis of silicon halides, and various modifications of these reactions are most commonly used for the deposition of silica films.3 Silica films obtained in this manner are likely to be contaminated by the by-products of the reaction, organic impurities, or hydrogen halides. The use of the oxidation of silane for the deposition process has been reported recently.4 The deposition of silica films on single-crystal silicon substrates by the oxidation of silane in a gas flow system has been studied in this work. The deposition variables studied were the crystallographic orientation of the substrate surface, the substrate temperature, and the nature of the diluent gas. The electrical charge behavior of Si-SiO2-A1 structures prepared under various conditions was investigated by capacitance-voltage (C-V) measurements of metal-insulator-semiconductor (MIS) capacitors. The experimental approaches and results are discussed in this paper. 1) DEPOSITION OF SILICA FILMS The overall reaction for the oxidation of silane is: The equilibrium constants of this reaction in the temperature range 500° to 1500°K, calculated from the JANAF thermochemical data,= are shown in Fig. 1. In addition to the large equilibrium constants, the oxidation of silane is also kinetically feasible at room temperature and above. However, the strong reactivity of silane toward oxygen tends to promote the nucleation of silica in the gas phase through homogeneous reactions, and the deposition of this silica on the substrate would yield nonadherent material. The formation of silica in the gas phase can be reduced by using low partial pressures of the reactants. Argon, hydrogen, and nitrogen were used as diluents in this work. 1.1) Experimental. The deposition of silica films by the oxidation of silane was carried out in a gas flow system using an apparatus shown schematically in Fig. 2. Appropriate flow meters and valves were used to control the flow of various reactants, i.e., argon, hydrogen, nitrogen, oxygen, and silane. Semiconductor-grade silane, argon of 99.999 pct minimum purity, oxygen of 99.95 pct minimum purity, and nitrogen of 99.997 pct minimum purity, all purchased from the Matheson Co., were used without further purification. In several instances, a silicon nitride film was deposited over the silica film. This was achieved by the nitridation of silane with ammonia using anhydrous ammonia of better than 99.99 pct purity supplied by the Matheson CO.' The reactant mixture of the desired composition was passed through a Millipore filter into a horizontal water-cooled fused silica tube of 55 mm
Citation

APA: T. L. Chu J. R. Szedon G. A. Gruber  (1969)  Part III – March 1968 - Papers - Silica Films by the Oxidation of Silane

MLA: T. L. Chu J. R. Szedon G. A. Gruber Part III – March 1968 - Papers - Silica Films by the Oxidation of Silane. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account