Part III – March 1969 - Papers- A Little Light on Material Requirements for Electronic Pickup Tubes

The American Institute of Mining, Metallurgical, and Petroleum Engineers
E. I. Gordon
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
2691 KB
Publication Date:
Jan 1, 1970

Abstract

The electronic pickup tube is the image-to-video signal-converter or transducer in tele vision-like systems. Images may relate to visible light or IR excitation as in conventional TV systems, X-ray excitation as in some medical and production control applications, or electron excitation as in electron microscopy. The latter process is also important in some forms of light or X-ray sensitive pickup tubes as an intermediate step. In virtually all of these devices the image ends up as a stored charge pattern on a suitable target electrode and the video signal is created by periodically scanning the target with a low energy electron beam and removing the stored charge. In a major group of tubes radiation induced conductivity creates the charge pattern. In others, photoemission is used. In this paper an attempt is made to illuminate some of the device requirements placed on materials exhibiting radiation induced conductivity, some of the materials and techniques that are used, and the problems. The emphasis will be on visible light and IR sensitive targets although some attention will be given to X-ray and electron imaging. Photoconducting films as well as diode arrays will be discussed. ELECTRONIC pickup tubes find their greatest use in commercial, entertainment television, and in industrial and educational closed-circuit television. Video telephone systems, such as AT&T's PICTURE-PHONE System will become eventually the greatest user. Military use is also very important. Nevertheless the use of electronic pickup tubes in technology, science, and medicine is assuming ever greater relevance and demands the greatest diversity and perfection in the pickup tube art. Commercial television and closed-circuit television use requires visible light response, high resolution, low lag, and uniform response. Video telephone use requires the same plus extreme reliability, stability, and low cost. Military use emphasizes, in addition, sensitivity, IR response, and ruggedness. (Devices for far IR response will not be considered here.) The use of pickup tubes in medicine and biology emphasizes UV response for microscopy, X-ray response for radiology, and energetic electron response for electron microscopy. Astronomy and nuclear physics demands low light level response, storage ability, and resolution (here the tube is a successful replacement for film). The interested reader might profitably read Advances in Electronics and Electron Physics, vol. 12,' 16,2 and 22A3 and 22B4 for detailed discussion of the use, properties, and technology of electronic pickup tubes. In general, because of the importance of these uses, none of the above properties will be ignored. Nevertheless attention will be restricted to only those imaging devices, called pickup tubes, using a scanning electron beam to dissect the image with a resulting video signal for conventional CRT display. However pickup tubes have become so complex that many of them include components such as image in-tensifiers which would be normally excluded by this restriction. Thus some of the other imaging devices will not be ignored entirely. We will first review the fundamental elements and physical phenomena involved in modern electronic pickup tubes, then the relevant materials and some of the material problems and then an interesting goal yet to be achieved. REVIEW OF PICKUP TUBE PRINCIPLES In all modern television systems using pickup tubes there is an interval called the frame interval, during which the incoming radiation flux is allowed to produce a cumulative effect in the form of a stored charge pattern which is a replica of the radiation image, and a scan interval during which the stored charge pattern is converted into a video signal. The frame interval bears no fixed relation to the scan interval and may be shorter or longer. In conventional, real time television the scan interval including retrace is identical to the frame interval. Integration and storage is the key to the sensitivity of modern pickup tubes, in contrast to earlier tubes such as the image dissector. At equivalent light levels and without integration, the number of photons contributing to the video signal in the image dissector is lower by a factor approximating the number of picture elements in the displayed image, a number of order 10. Statistical fluctuations in the number of contributing photons represent a serious limitation to the attainable signal to noise ratio, resolution and contrast. As a result considerably greater light levels have to be used then in targets which integrate over the full frame period. Thus the crucial elements, common to all modern pickup tubes, are the charge storage surface and the scanning electron beam which is incident on the charge storage surface at very low energy. These are shown in Fig. 1(a). The charge storage insulator is generally very thin with a thickness of several microns or less. The surface of the insulator is held near cathode potential. The backplate potential is held at cathode potential or at a small positive voltage relative to cathode. The combination of storage insulator and backplate electrode is commonly called the "target". In the absence of incident radiation flux the electron beam scans over the storage surface depositing negative charge uniformly over the scanned part of the surface by virtue of the fact that the effective secondary
Citation

APA: E. I. Gordon  (1970)  Part III – March 1969 - Papers- A Little Light on Material Requirements for Electronic Pickup Tubes

MLA: E. I. Gordon Part III – March 1969 - Papers- A Little Light on Material Requirements for Electronic Pickup Tubes. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account