Part III – March 1969 - Papers- Effects of Substrate Misorientation in Epitaxial GaAs

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. E. Blakeslee
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
803 KB
Publication Date:
Jan 1, 1970

Abstract

Morphological and electrical properties of GaAs epitaxial layers are influenced not only by changes in the nominal substrate orientation but also by small amounts of misorientation from the exact crystal planes. Deviations up to 5 deg from {11IA}, {11IB}, and (100) planes were investigated. Growth rates increase progressively with angle, approximately I u per hr per deg. Size and density of growth pyramids fall off with increasing angle, but other effects that are deleterious to the surface may occur which are heightened by increased misorientation. Carrier concentration decreases and electron mobility consequently increases as the angular offset increases, except in the case of strong compensation, where the mobility trend is reversed. It has long been known that changes in the crystallo-graphic orientation of the substrate may cause pronounced effects on the morphological properties of vapor grown semiconductor films. Reports of orienta-tion-dependent growth rates and surface characteristics are as old as the literature on epitaxy itself. shawl has recently published a comprehensive study of the dependence of growth rate on substrate temperature and orientation in epitaxial GaAs. It is also well-known that misorienting the substrate surface a few degrees away from the nominal low-index crystal-lographic plane often produces a much smoother epitaxial surface. This was reported by Tung2 for silicon, Reisman and Berkenblit3 for germanium, and by Kontrimas and Blakeslee4 for GaAs, and use is commonly made of this fact in the semiconductor industry to help guarantee smooth vapor deposits. The effects of substrate orientation on the carrier concentration and mobility of vapor grown GaAs were first documented by williams5 in 1964 and have been observed by several other authors since then,6,7 but no one has yet reported a careful study of how small changes influence these properties. We have made such a study and have found that sizable differences in growth rate, morphology, carrier concentration, and mobility can indeed be observed for epitaxial films grown on substrates that are oriented by progressive small increments away from the exact crystal plane. EXPERIMENTAL Early in the investigation an arsine synthesis system of conventional design8 was employed to produce growths on {111A}-oriented GaAs substrate crystals. In that early work, pronounced effects on carrier concentration and electron mobility were observed as a function of slight misorientation from this low index plane. That observation led to the more careful study that is reported here. An AsC13 system, differing in major aspect from those commonly in use today9 only in that the reactor is vertical rather than horizontal, was used for the detailed study. The gallium source was at 900°C and the substrates were at 750°C. The flow rate of pal-ladium-diffused H2 through the AsCl3 bubbler was 200 cu cm per min, and the flow rate of bypass H2 was also 200 cu cm per min. The substrates consisted of chro-mium-doped semiinsulating GaAs to facilitate elec-trical evaluation of the overgrowth by means of Hall and conductivity measurements on conventional eight-legged Hall bridges. They were misoriented by 0 to 5 deg from the {111A}, {111B}, and (100) planes, toward the (100) from the {111A} and {111B} and randomly toward the <111A> or <111B> from the {loo). The crystals were oriented for sawing by the Laue back-re-flection technique, which is good only to about ±1/2 deg; but after polishing or sometimes after epitaxial growth the wafers were checked by a diffractometer technique which is accurate to about * 0.1 deg. After lapping, the wafers were polished with NaOCl after the technique of Reisman and Rohr,10 and just before use they were cleaned in NaOC1, thoroughly rinsed with de-ionized water, and blown dry with nitrogen. Each run employed four wafers, each misoriented by differing amounts from one of the three major faces, and at least two runs were made for each orientation. The runs were continued long enough to provide at least a 15-µ or thicker layer. SURFACE MORPHOLOGY The appearance of all the films that were grown in a given run always changed from wafer to wafer as a function of increasing misorientation, but not always in the same regular fashion. At least three different trends were observed. These are more easily seen than described, and reference to the series of photo-
Citation

APA: A. E. Blakeslee  (1970)  Part III – March 1969 - Papers- Effects of Substrate Misorientation in Epitaxial GaAs

MLA: A. E. Blakeslee Part III – March 1969 - Papers- Effects of Substrate Misorientation in Epitaxial GaAs. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account