Part III – March 1969 - Papers- Large Area Epitaxial Growth of GaAs1-x Px for Display Applications

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1156 KB
- Publication Date:
- Jan 1, 1970
Abstract
An open tube vapor phase epitaxial growth system has been used for large area (multiple substrate) growth of GaAs1-xPx on GaAs substrates. The GaCl-GaCl transport reaction is used with either a GaAs or Ga (nonsaturated) source. Selenium and tellurium have been used for donor impurities, and zinc as an acceptor. The useable substrate area in this system is approximately 20 sq cm. The uniformity of thick-ness of the epitaxial layers are typically better than ±5 pct across a given wafer. Electrical and optical measurerments indicute comparable uniformity in electrical and luminescent properties within a wufer. The application of this system to the large scale pro-duction of GaAs1-x Px for display devices, both discrete and arrays, is discussed. Typical electrical and luminescent properties of light emitting diodes fabricated front material produced by this technique are presented. THE most promising materials currently being utilized for visible injection electroluminescence are GaAs1-xPx, Ga1-xAlxAs, and Gap. All have reasonably efficient emissions in the red portion of the visible spectrum at room temperature; Gap also has an efficient green emission.' At present, GaAs1-xPx has a technological advantage over Ga1-xAlxAs and Gap for display applications, since relatively large (several sq cm) areas of GaAs1-xPx suitable for use in electroluminescent devices may be readily grown by vapor phase growth techniques. In contrast, the preparation of Gap and Ga1-xAlxAs for electroluminescent device applications generally employs solution growth techniques which are at present not well suited for the growth of large areas of uniform thickness and doping level. The capability of uniform growth over large substrate areas and the use of multiple substrates is necessary for the practical utilization of electroluminescent devices. This is particularly important when quantity production or monolithic devices are required. Furthermore, in many display applications arrays of light emitting devices are used, the individual elements of which are of a size resolvable by the unaided eye. Thus the overall dimensions of display are substantially larger than those of most semiconductor devices. It is also necessary to achieve a high degree of control over the growth parameters to attain the required degree of reproducibility of materials properties for electroluminescent devices. In the case of GaAs1-xPx it is necessary to accurately and precisely control the phosphorus content of the alloy, both on a macroscopic and microscopic scale, in addition to the parameters generally associated with epitaxial growth such as thickness and doping level. This value is critical, as it has a major effect on the performance of electroluminescent devices. This paper describes the epitaxial growth of GaAsl-xPx suitable for electroluminescent display devices using a system developed specifically for this purpose, and which contains several novel features. The results of studies of selected physical properties of the epitaxial layers are also discussed. Finally, a brief summary is given of the characteristics of display devices fabricated from GaAsl-xPx grown in this system. EXPERIMENTAL A) Reactants. A number of techniques suitable for the vapor phase epitaxial growth of GaAs1-xPx have been reported in the literature.'-' The method selected for this investigation is that in which the Ga is transported by the GaC1-GaCI3 reaction in an open tube process. The results reported here were obtained using either the combination of GaAs, AsC13, and pH3, or Ga, AsH3, pH3, and HC1 as the initial re-actants.* The ASH3 and pH3 were obtained as dilute *Several different sources of supply were used for these reactants, y~elding comparable results._____________________________________________________ mixtures in HZ; the HC1 was obtained from the reduction of AsC13 by Hz at elevated temperatures. Both selenium and tellurium were employed as donor impurities, and zinc as an acceptor impurity. Selenium was introduced in the form of H2Se, tellurium in the form of tellurium-doped GaAs, and zinc in the form of diethy1 zinc. B) Apparatus. The prinicipal difference between the apparatus used in the present study and that of Tietjen and Amick,8 in addition to size and other related design features, is that RE induction heating is utilized in place of resistance heated furnaces. Induction heating was selected for this application because it appears to have several advantages, including: 1) It is possible to keep all fused silica portions of the apparatus at temperatures well below those of the reaction zone, thus minimizing a possible source of contamination. 2) The thermal mass of an induction heated system can be made small, thus reducing the total time required for the growth process. 3) Sharp temperature profiles (desirable for high deposition efficiency) are easily achieved. 4) The volume of the system for a given substrate area can generally be made smaller than a comparable resistance heated unit. This results in shorter time
Citation
APA:
(1970) Part III – March 1969 - Papers- Large Area Epitaxial Growth of GaAs1-x Px for Display ApplicationsMLA: Part III – March 1969 - Papers- Large Area Epitaxial Growth of GaAs1-x Px for Display Applications. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.