Part III – March 1969 - Papers- Mechanisms of Electron Beam Evaporation

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 1203 KB
- Publication Date:
- Jan 1, 1970
Abstract
High current-low voltage EB-gun evaporation in an oil-free ultra-high vacuum system was found to be necessary, though not sufficient, for stability (300°C, 106 v per on) of aluminium gate MOSFET's and MOS capacitors not stabilized by a phosphorous glaze. five characteristics of the equipment used: 1) Vacuum purification of the aluminum charge, 2) Ionization of the evaporant by the electron beam, 3) X-ray formation, 4) Residual gases during evaporation, and 5) Metal film structure were studied as Possibly significant in MOS fabrication. EVAPORATION of contact metals common to the semiconductor industry historically has been accomplished with oil diffusion pump systems and various resistance heated evaporant sources as dictated by the type of metal evaporated. To meet a need for greater reliability of semiconductor devices, other metallization methods were developed. A good example would be application of the moly-gold contact system to integrated circuits with deposition by RF or triode sputtering.' More recently, fabrication of stable metal-oxide-silicon devices and circuits has put new demands on metallization. The purity of the thin metal films composing MOS structures is critical, particularly at the metal-oxide interface, and ultra-high vacuum metallization using sputter-ion pumping and electron beam gun (EB-gun) evaporation are well suited for the task. At this laboratory aluminum has been the most common contact-gate metal for both MOS capacitors and MOSFET's. In the earliest work with MOS capacitors, aluminum was evaporated from wetted tungsten filaments using both diffusion pump and ion pump vacuum systems. In spite of clean oxide techniques these capacitors were unstable under bias-tempera-ture stressing. Only after a switch to EB evaporation of aluminum were stable capacitors produced. Using the same techniques it was possible to make MOSFET's with equivalent stability. Stability data for a discrete MOSFET is shown in Fig. 1. This is a "clean" oxide gate (no phosphorus stabilization or no etch back of a thicker gate) having a thickness of lOOO? thermally grown on the (111) plane. Gate length after diffusion was 0.24 mils, and the devices were hermetically sealed. Stressing conditions were 300°C and 106 v per cm applied alternately as a positive and negative field for 10 min, 50 min, and 4 hr for a total stress time of 10 hr. An initial shift in turn-on voltage of 0.1 v was detected for 10 min of positive bias. All evidence at this laboratory indicated that while EB-gun evaporation of ultra-high purity aluminum was not sufficient for 300°C stability, it did seem to be necessary. There may well then be something inherent in the EB-gun deposition used which enhanced stability, and probably no single factor existed but rather a series of factors. It is the purpose of this paper to report on some of the investigations carried out to learn more about EB-gun evaporation in ultra-high vacuum systems. EXPERIMENTAL DESCRIPTION The EB-gun was self accelerated, had a maximum power rating of 10 kw, and used a water-cooled copper crucible able to hold a 20-g aluminum charge. The electron beam was bent 180 deg and focused by an electromagnet which also provided movement of the beam across the crucible. Normal power conditions in this work were 9 kv and 300 to 600 mamp. The gun can be described as high-cur rent/low-voltage and was quite different in its mechanism of operation from EB-guns with much higher acceleration potentials. An oil-free vacuum system capable of 5 x 10- l0torr, a quartz crystal rate and thickness monitor and a quadruple mass spectrometer completed the evaporation system, Fig. 2. A typical evaporation cycle consisted of a 3 to 4 hr pumpdown to the upper l0-9 range and evaporation at l0? per sec with the pressure in the bell jar not rising above 1 x 10"7 torr. Thickness control was 5 pct or less and could be automatically monitored and controlled. Five phenomena associated with the EB evaporation and considered as possible contributors to Ma performance included a purification effect, ionization of evaporating aluminum, X-rays, constitution of vacuum ambient during evaporation, and film structure dependence upon evaporation rate. These phenomena are now discussed. Vacuum Purification. The design of the EB-gun permitted purification of the aluminum charge by vacuum outgassing. Particular features included an efficiently water-cooled copper hearth with a capacity of over 20 g of aluminum and the capability for sweeping the beam across the charge. Such capacity meant that aluminum had to be added only after about every fifth evaporation. A new charge was not required each evaporation as is necessary with filament evaporation. An oxide "scum" which appeared on the charge could be completely cleared from the top hemisphere of the charge by sweeping with the beam prior to opening the shutter. An indication of the purifying effect was obtained by a series of analytical measurements on incoming aluminum, after melting but with little vacuum out-gassing, after 30 min outgassing, and the evaporated film itself. Either a solids (spark source) mass spectrometer or an emission spectrometer were used for analyzing the aluminum charge. Analysis of the evapo-
Citation
APA:
(1970) Part III – March 1969 - Papers- Mechanisms of Electron Beam EvaporationMLA: Part III – March 1969 - Papers- Mechanisms of Electron Beam Evaporation. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.