Part III - Papers - Electro and Photoluminescence of Rare-Earth-Doped ZnS

The American Institute of Mining, Metallurgical, and Petroleum Engineers
S. Razi W. W. Anderson
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
1441 KB
Publication Date:
Jan 1, 1968

Abstract

Electroluminescetrce of single crystals of terbium-(loped ZnS prepared by vapor-transport technique shows the sharp line specirum characteristic of the 4f— 4ft,ansitiotzs of the trivalent Tb3 rotz. V-I tt~easuverr~ents give evidence of space-ellarge-lirrlited curvent but the thrveshold for trap-filled law behavior is not iu agreement with Lampert&apos;s theory for. Single injection. Variations of &apos;brightness with applied voltage, the observation of double peaks its brightness because joms, and the spatial distribution oi electroLur?zir~escerrce indicate that the accelet~atiotz-collision mechanism involving the bst lattice and/ov shallow traps is most likely to be responsible fov excitation of&apos; electrolnminescence. Efficiency rtreusuver)~etits show the quantwn efficiency to be about 10 pct and powev efficiency about 0.05 pct. Effect of anr~eallng the crystal in sulfur vapor is to enluztzce llle rare-earth emission. It rs pvoposed tlzat sulfitv anr~ealing crreates acceptorr-lvpe defects with which the donor-type vare-eavtll ion can associate more readily vesulting in enhanced rare-earth emission. A&apos;o such e~zlznr~cerr~etrt is obserued when the crystal is atztrealetl in zinc vapor. Photolianinescence of ZnS doped nith a variety of rare earths also shows tile slurvp l~rze rwve-eavtlz erriission which in sorrretirr~es accompanied by broad band, stvuctureless lattice emission. Photo-atrd electrolutr~itzesce?~ce of ZIIS:Tb slw~rj do!rlit~unt rare-earth emission in the ~ticirzity of 54(3OA corre-sporrdit~g to the transition D* — Fj. Hoz~!el)er, the detailed line structuve of the luo spectvtr is cliffevet~t, irzdicutit~g that different sites are active in the two processes. Decay of rave-eartlr fluorescence in ZnS doped with any of sei!evul vuve eurtlzs car1 be described by a single exporleritial e.scepl joy ZrlS:lIo. Tl~is exceptiotr can be explaitred it~ tevrr~s of tlre closely spaced er~evgy 1e1:els Jov the HO~&apos; iorr. Decay lime measurertzekzts jov ZnS:Tb, using pulsed elect,-ical ar~d pulsed opticcll excitutiorzs, (11-e itz goor1 agrcetrier~t. LUMINESCENCE of rare-earth-doped materials has been a subject of interest for the past 20 years. Within the past few years there has been a considerable increase in rare-earth research motivated in search of new and more efficient laser materials and also due to the use of certain-rare-earth compounds in the preparation of color television screens. The purpose of this study has been to seek an understanding of some of the basic processes involved in exciting the rare-earth luminescence which is associated with transitions within the 4f shell of the trivalent rare-earth ion. Single crystals of ZnS doped with a variety of rare-earth ions have been prepared by vapor-transport technique described elsewhere.&apos; Photoluminescence was excited by a high-pressure short-arc mercury lamp together with suitable glass and chemical filters. For electroluminescence, sinusoidal and pulse excitations were used. 1) ELECTRICAL CHARACTERISTICS 1.1) V-I Measurements. Electroluminescence experiments were performed on crystals of terbium-doped ZnS. The samples were cleaned and etched and indium or In-Ga alloy contacts were alloyed on by heating in H2 atmosphere to 600°C for times ranging up to 10 min. Static voltage-current measurements were made on several samples. Fig. 1 shows the results for a typical sample. For voltage V < 20 v, the V-I relationship is linear giving a resistivity of 2.5 x 109 ohm-cm for this particular sample at room temperature. In the range of 20 to 250 v, I varies as V "3 and at still higher voltages (when electroluminescence is visible to the scotopic eye) current varies as Vs up to 600 v, all at room temperature. At 77"K, for V > 200 v, / I vge5 up to 1000 v. The V-I characteristics at room temperature follow reasonably well the behavior predicted by Lampert&apos; for one carrier space-charge-limited current in an insulator with traps although, as shown later, the expression derived by Lampert2 for the threshold for trap-filled law behavior Vtfl yields an unrealistically low value for trap density if we use the experimental value of 300 v for VtfL. Assuming the case for shallow trapping, the transition from Ohm&apos;s law behavior to space-charge-limited behavior occurs at voltage Vtr given by where no = thermally generated free carrier density, L = length of the sample, e = static dielectric constant, 6 = ratio of free to trapped electron densities, e = electron charge. For the ZnS:Tb crystal, L = 0.5 mm, E = 8.3 €0, Vtr - 20 v, and no = 5 x 10&apos; per cu cm, calculated from the ohmic behavior assuming electron mobility of 100 sq cm per v-sec. This results in 9 = 0= As more and more electrons are injected the Fermi level moves up in the forbidden gap toward the conduction band. If we assume a single-energy level for traps (which is not strictly correct, as we will show later), the current voltage characteristic is profoundly affected when the Fermi level crosses the trap level. The traps are now filled and injected carriers can no longer be immobilized in traps. Hence, current rises sharply with voltage. The transition from space-charge-limited behavior to the trap-filled behavior occurs at voltage VTFL given by
Citation

APA: S. Razi W. W. Anderson  (1968)  Part III - Papers - Electro and Photoluminescence of Rare-Earth-Doped ZnS

MLA: S. Razi W. W. Anderson Part III - Papers - Electro and Photoluminescence of Rare-Earth-Doped ZnS. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account