Part III - Papers - Optical and Laser Properties of Nd+3 – and Eu+3 –Doped YVO4

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. R. O’Connor
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
981 KB
Publication Date:
Jan 1, 1968

Abstract

Stimulated emission from Nd+3 in yttrium uanadate fYVOJ is reported. Single crystals of YVO4:Nd, obtained from Linde Col-p., have improved substantially in the last several months. Pulsed thresholds of YVO, laser rods are now approximately 2 to 3 5, cowparable to tliose for YAG:Nd. Yttrium uanadate crystalli~es irz a space group similar to zircon. All rare-earth vanadates have this structure. Rare-earth ions sucll as Nd+3 which substitutes for Y+3, aye situated irz a strong tetragonal crystal field which lacks inversion symmetry. This condition increases the p'robability of the parity-forbidden f — f transitions. Yttrium anadate has strong absorption bands beyond -1000A. These are clue to Y-O, V-O charge transfer and molecular transitions. Under 2537 and 3660A irradiation pure YVO, fluroresces u bright yel-LOLO. This fli&orescence is corrzpletely quenched in YV04:Ncl crystals. This and other evidence of energy trut~sjer from the lattice is repovted. Optzcul atz 1user pvope 1-ties o! YI'U4:E[t are brieJy described. THIS paper describes some of the optical and laser properties of Nd+3- and Eu+3-doped yttrium orthovana-date (YVO4). It reports laser action for the first time in this low-symmetry host. For some time we have pursued a research program concerning laser hosts' wherein the rare-earth (RE) ion is situated at a site of low crystal symmetry so as to increase the probability of radiative transitions. Single crystals of doped and undoped YV04 are grown from iridium crucibles in an oxyhydrogen gas-fired furnace by a modified Czochralski technique.' This material crystallizes in a D4li tetragonal space group of the zircon (ZrSiO,) type.3 All RE vanadates have the same structure and form solid solutions with YVO4. Therefore, it will be possible to investigate a variety of cross-pumped laser systems, as in the case of yttrium aluminum garnet (YAG).4 At present, ~d'~-doped YAG is one of the most efficient solid-state lasers.5 Accordingly, most of the material to follow will compare the properties of YV04 to those of YAG. Fig. 1 shows the relative transmission of YAG and two types of YVO4. "Pure" YVO4 has a normal absorption edge and is colorless. A second type has a broad absorption peaking near 4200A and is yellow. Rubin and Van uitert6 suggest the yellow material is slightly reduced. Samples of each type are being investigated by electron spin resonance,7 but these studies are so far inconclusive. The pulsed laser threshold is much lower in the yellow material than in the colorless. Therefore, the absorption at 3500 to 5000.4 transfers energy to the Ndi3 ions. Photons of wave length between 2000 and 4500A cause undoped YVO4 to fluoresce at 4800, 5250, 5460, 5540, and 5750A. This emission, previously reported by Brixner and Abramsom,8 is partially quenched by EU'~ and completely quenched by Ndt3 at room temperature due to energy transfer from the lattice to the RE ions. At low temperatures, some lattice fluorescence is present. This implies that the energy-transfer process is in part phonon-assisted. Although the YVO, single crystals used in this work were prepared from Y2O3 containing less than 0.01 pct rare-earth impurities, there is aopossibility that emission lines between 4800 and 5750A are due to dysprosium, terbium, and so forth. However, these lines are not observed in other compounds, prepared from Y2O3, such as YP04, Y2MoO6, and so forth. Furthermore, extensive absorption measurements on our "pure" YV04 single crystals between 0.4 and 5.0 failed to reveal any characteristic rare-earth lines. Fig. 2 compares the absorption spectra of Ndt3-doped YAG and YVO4from 0.6 to 1.0 . The Ndt3 absorptions are labeled according to free ion, R-S coupling. These term designationsQ are appropriate for YAG:Nd. They appear to be inappropriate for YV04:Nd. In YVO, neodymium must substitute for yttrium. The yttrium site is situated In a strong tetragonal field, where point symmetry is (42m) or possibly lower.1° However, the reduced splitting of the Stark components of the YV0,:Nd spectrum implies that the NdT3 ion is in a cubic site. The only plausible explanation for this discrepancy is that the Ndt3 ion is in a low-symmetry site, lacking inversion symmetry, so that a substantial admixture of 4f and 5d wave functions occurs. In this case, R-S coupling is not valid and J is no longer a good quantum number." Consistent with this view, the 4~ metastable level of YV04:Nd has an oscillator strength larger and a
Citation

APA: J. R. O’Connor  (1968)  Part III - Papers - Optical and Laser Properties of Nd+3 – and Eu+3 –Doped YVO4

MLA: J. R. O’Connor Part III - Papers - Optical and Laser Properties of Nd+3 – and Eu+3 –Doped YVO4. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account