PART III - Resistivity and Structure of Sputtered Molybdenum Films

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1869 KB
- Publication Date:
- Jan 1, 1967
Abstract
Films of molybdenum have been prepared by sputtering onto oxidized silicon substrates. The resistivity. lattice parameter, orientation, and grain size were studied as a function of substrate temperature and substrate bias. Under normal sputtering conditions, the resistivity of the films was found to be quite high (600 x 10 ohm-crn). However, with the use of the negative substrate bias of 100 v and a substrate temperature of 350°C, films weve produced with a resistivity of ahout twice that of bulk molybdenum. The lattice parameters measured in a direction nornzal to the surface of the films weve found to be gveatev than the bulk value. This was interpreted as being at least partly due to the presence of compressive stresses. The effects of annealing in an Ar-H atmosphere were studied in terms of diffraction line width, lattice parameter, and resistivity. BECAUSE of its relatively low bulk resistivity (5.6 x 106 ohm-cm)' molybdenum is potentially interesting as a thin-film conductor in integrated circuits. An additional feature which makes it attractive for this purpose is its low coefficient of expansion (5.6 x KT6 per "c),' which is fairly well matched to that of silicon (3.2 x 10 per c). It is possible to deposit molybdenum films by evaporation but generally films produced in this manner have a high resistivity. In order to achieve resistivities close to bulk value, Holmwood and Glang found it necessary to operate in a vacuum of about 107 Torr and to maintain the substrates at 600 C during film deposition. Sputtered molybdenum films have been examined by Belser et a1.7 and, recently, by Glang et al.' This paper describes the results of an attempt to extend some of that work and examine the effects of annealing and getter sputtering on the physical and structural properties of the films produced. SPUTTERING APPARATUS AND PROCEDURE The apparatus used for most of the film sputtering work described here consisted of two "fingers" serving as anode and cathode, respectively, which were mounted within an 18-in.-diam glass chamber. A liquid nitrogen-trapped 6-in. diffusion-pump system was used to achieve a vacuum of about 1 x 107 Torr within the chamber prior to sputtering. The essential features of the equipment are shown in Fig. 1. Cathode and anode fingers are stainless-steel tubes isolated from the top and bottom plates by Teflon collars. In order to limit the discharge to the space between anode and cathode, each finger is surrounded by an aluminum hield, at ground potential, having an internal diameter 18 in. larger than the outside diameter of the finger. The cathode and anode fingers are 6 and 4 in. in diam, respectively. A 116-in.-thick sheet of molybdenum is brazed with a 10 pct Pd, 58 pct Ag, 32 pct Cu alloy to a copper disc which is mounted by means of screws and a large 0 ring onto the lower end of the cathode finger. The disc is cooled during sputtering by water circulation inside the finger. The use of several feet of plastic tubing for the water input and outputg reduces leakage to ground to less than 1 ma when the cathode potential is raised to 5 kv. The upper end of the anode finger is terminated by a brazed-on copper block. A variety of specimen holders can be easily mounted on the upper face of this block. Substrate heating or cooling is achieved by use of an appropriate unit attached to the lower face of the same block. Heating is achieved by means of cartridge-type heaters and cooling by copper coils fed with forming gas under pressure. The inner chamber of the specimen finger constitutes a small vacuum chamber of its own which is evacuated by an auxiliary mechanical pump in order to limit heating element oxidation and heat transfer by convection currents. An advantage of the finger arrangement is the absence of cooling and heating coils and wires within the main chamber. The stain less-steel shutter is useful to establish a discharge for cleaning the cathode at the beginning of each sputtering run. Water cooling of the shutter reduces heating and the out-gassing of impurities which might condense on the nearby substrates. Unless otherwise specified, the substrates used in these experiments were 1-in.-diam oxidized silicon wafe:s, 0.007 in. thick, having an oxide thickness of 6000A. The substrate holders were large copper discs onto the surface of which a number of molybdenum discs, 116 in. thick and 78 in. in diam, were brazed. The wafers were clamped to the molybdenum discs
Citation
APA:
(1967) PART III - Resistivity and Structure of Sputtered Molybdenum FilmsMLA: PART III - Resistivity and Structure of Sputtered Molybdenum Films. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.