Part IV – April 1968 - Papers - The Deformation Characteristics of Textured Magnesium

The American Institute of Mining, Metallurgical, and Petroleum Engineers
E. W. Kelley W. F. Hosford
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
581 KB
Publication Date:
Jan 1, 1969

Abstract

By testing polycrystalline specimens from textured plates which had Previously been used to provide materials for growing single crystals, it has been possible to relate the plastic anisotropy of textured materials to the deformation behavior of single crystals. The deformation studies have been conducted at room temperature on textured polycrystalline magnesium and binary Mg-Th and Mg-Li alloys. Variously oriented specimens of the textured materials were deformed in plane-strain compression and in uniaxial tension and compression. The stress-strain curves are similar in their general jorm of anisotropy and stress levels to those obtained on single crystals of the same alloys. The degree of anisotropy is lower, however, in the polycrystalline materials and correlates with the intensity of the basal texture. Yield loci for the textured materials appear reasonable in terms of the deformation mechanisms, and deviate sharply from the form predicted by the Hill analysis for aniso-tropic material. A N earlier study1 of single crystals has shown that magnesium and magnesium alloys with thorium and with lithium deform at room temperature primarily by basal slip, {10i2) twinning, and (1011) banding. The (10i1) banding mode is a combination of {10ll) twinning followed by (1012) twinning and basal slip within the doubly twinned material.2, 3 Magnesium with lithium can also deform by {1010)(1210) prism slip.1'4'5 Still other deformation modes have been reported for magnesium6-11 but these are considered to play a minor role in room-temperature deformation. In a polycrystalline material, plastic deformation must occur in the individual grains through the operation of one or more of the various deformation modes. Because the critical shear stress for basal slip is very low compared to the activation stresses for the other deformation modes,' basal slip accounts for much of the deformation in the polycrystalline aggregate. However, since there are only two mutually independent basal slip systems, and because five independent systems must be active for an arbitrary shape change in any material,'' modes other than basal slip must account for some of the strain. The deformation of textured magnesium, like that of other hcp metals, must be controlled by the same mechanisms observed in single crystals. In strongly textured material, the form of the anisotropy should be similar to that of single crystals, and the degree of anisotropy should depend on the intensity of the texture. EXPERIMENTAL PROCEDURE The anisotropy of deformation was investigated through the use of plane-strain compression tests, as well as uniaxial tension and compression tests. Materials. Test specimens were cut from the three textured plates of magnesium which had previously been used to provide material for single crystals.' These plates, furnished by Dow Chemical Co., had been reduced about 80 pct during the process of being hot-rolled to their final 1/4-in. thicknesses. The plates had the three respective compositions, pure magnesium, Mg-0.5 wt pct Th (0.49 pct Th by spectro-graphic analysis), and Mg-4 wt pct Li (3.84 pct Li by chemical analysis). Impurities other than iron were less than 0.0005 pct Al, 0.01 pct Ca, 0.001 pct Cu, 0.0006 pct Mn, 0.001 pct Ni, 0.003 pct Pb, 0.001 pct Si, 0.001 pct Sn, and 0.01 pct Zn. Iron was 0.001 pct in the pure magnesium, 0.002 pct in the Mg-0.5 pct Th, and 0.014 pct in the Mg-4 pct Li. The textures of the three plates were determined by X-ray diffraction utilizing only the reflection technique out to an angle of 50 deg from the sheet normal. The resulting basal pole figures are presented in Figs. 1, 3, and 5. Grain sizes in the plates were ASTM number 4 in the pure magnesium and number 7 in each of the alloys. Plane-Strain Compression Tests. Plane-strain compression specimens approximately $ in. thick by 4 in. wide by $ in. long were prepared for each of the three compositions. These specimens were prepared in a manner similar to that used for the single-crystal specimens of the earlier study.' All polycrystalline specimens were stress-relieved at 500°F for hr as the final step in their preparation for testing. The testing procedure was identical to that used for the single crystals, involving compression in a channel and using 2-mil Teflon film as a lubricant. The specimens were tested in six orientations of interest, these being the six combinations of the rolling, transverse, and thickness directions of the material serving as loading, extension, and constraint directions in the plane-strain compression test. Each of the six orientations was assigned a two-letter identifying code. These are combinations of the letters (thickness direction), R (rolling direction), and T (transverse direction) with the first letter signifying the loading direction and the second letter the extension direction. For example, ZR specimens were compressed in the thickness direction while extension was permitted to operate in the rolling direction of the textured material. To facilitate comparison of the present work with that of the single-crystal study1 the orientations used for single crystals are given in Table I along with the polycrystalline orientations that most nearly correspond. To insure reproducibility, at least three duplicate
Citation

APA: E. W. Kelley W. F. Hosford  (1969)  Part IV – April 1968 - Papers - The Deformation Characteristics of Textured Magnesium

MLA: E. W. Kelley W. F. Hosford Part IV – April 1968 - Papers - The Deformation Characteristics of Textured Magnesium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account