Part IV – April 1969 - Papers - Preferred Orientations in Commercial Cold-Reduced Low-Carbon Steels

The American Institute of Mining, Metallurgical, and Petroleum Engineers
P. N. Richards M. K. Ormay
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
3077 KB
Publication Date:
Jan 1, 1970

Abstract

Commercially hot-rolled low-carbon steel strip may have one of two basic types of orientation texture, depending upon the amount of a iron which was present during the finishing passes. The changes in these textures with varying amounts of cold reduction up to 95 pct have been determined for the sheet surface plane and for parallel planes down to the mid-plane. The development of cold reduction textures has been reassessed on the basis of (200), (222). and (110) stereographic pole figures and pole density or inverse pole figure values. In agreement with the literature, it is shown that the textures can be described in terms of partial fiber textures but alternative descriptions are given for one of the fiber textures, in order to more closely correlate with experimental data. One partial fiber texture consists of orientations of the type (hkk)[011] extending from (100)[011] to {322}(011) in agreement with the literature. At moderate amounts of cold reduction, a second partial fiber texture forms with a <331> fiber axis inclined 20 deg to the sheet normal and a range of orientations centered on one close to (1 11)[112] and reaching to (232)[101] or (322)[011]. An alternative description involves a (111) fiber axis parallel to the sheet normal but capable of rotation about the rolling direction with rotation about the fiber axis. ORIENTATIONS developed in low-carbon steel strip after cold reduction are of commercial importance because they control, in part, the final preferred orientations after subsequent annealing. The method of control however is not understood completely. Some preliminary work indicated that the cold-reduced orientations and the subsequent annealing textures of commercial low-carbon steel were dependent on the orientations present in the material before cold reduction, that is, those present in the hot-rolled strip but, to date, the effects of initial orientations have not been extensively investigated. For this reason, much of the information given in the literature on development of preferred orientation is difficult to assess as details of initial texture and processing conditions are often inadequate or are altered by a subsequent heat treatment such as normalizing.&apos; It is known2 that anomalous results for near surface orientations may be obtained if lubrication during cold rolling is not adequate but whether lubricant was used during the experiments has not always been given, nor has the exact depth below the surface at which determinations have been made. A comprehensive review of cold rolling textures has been made recently by Dillamore and Roberts&apos; and more restricted recent reviews are due to stickels4 and Abe.5 Based largely on the experimental work of Bennewitz,1 reviewers have accepted that the preferred orientations produced on cold reducing low-carbon steel can be described in terms of two partial fiber textures as follows: Partial Fiber Texture A which has a (011) direction in the rolling direction and includes orientations within the spread from (211)[011] through (100)[Oll] to (211)[011.]; there is some controversy as to whether it extends as far as the orientation (111)[011]. As Dillamore6 has observed, the extent of this partial fiber texture depends on the intensity levels selected. Partial Fiber -texture B which has a (011) direction located 60 den from the rolling direction in the plane containing the rolling direction and the sheet normal. There are two directions which satisfy these conditions and orientations in this partial fiber texture extend from (21l)[0ll] through (554)[225] to (121)[101]. The orientations {211}(011) are members of both partial fiber textures A and B and it can be noted that a variant of {554)<225> is within 6 deg of a variant of {111}(112). Barrett7 had postulated earlier that, in addition to orientations which would fall into partial fiber texture A, a true fiber texture with a (111) direction in the sheet normal was present after heavy cold reduction. This fiber texture would include orientations such as {111}(011) and {111}(112). Later investigators, notably Bennewitz,&apos; have discounted this, mostly on the ground that the partial fiber textures A and B, as described above, contain all the strong orientations that have been observed. However in other work it has been reported2 that (222) pole density or inverse pole figure values show a continuing increase with increasing reduction by cold rolling and give values considerably greater than for any other low indices plane. Thus it could be inferred that a (111) fiber texture as described by Barrett would be one which becomes more dominant with increasing cold reduction, whereas Bennewitz&apos; concluded that components such as {554)(225) in partial fiber texture B began to decrease in intensity at high reductions. Following Bennewitz, one would expect a decreasing (222) pole density value (parallel to the sheet normal) with increasing cold reduction. Because fiber textures consist of grains with a range of orientations that have one axis in common, it has been inferred that during deformation the crystal orientations rotate about the fiber axis&apos;74 and that the orientations of crystals that at one stage belong to one fiber texture can rotate on further cold reduction into the other fiber texture through an orientation in which the two fiber textures intersect.&apos; For example,
Citation

APA: P. N. Richards M. K. Ormay  (1970)  Part IV – April 1969 - Papers - Preferred Orientations in Commercial Cold-Reduced Low-Carbon Steels

MLA: P. N. Richards M. K. Ormay Part IV – April 1969 - Papers - Preferred Orientations in Commercial Cold-Reduced Low-Carbon Steels. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account