PART IV - Papers - The Elastic Anisotropy of Rolled Beryllium

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 1502 KB
- Publication Date:
- Jan 1, 1968
Abstract
The anisotropic elastic behavior of rolled beryllium sheet has been measured, using a pulse echo technique, and compared with X-ray diffraction data. Calculated elastic stiffness constants compared favorably with published values for beryllium single crystals which were attributed to the strong (0002) rolling plane texture. Variations of Young's modulus in the yolling plane could be associated with the velative distribution of (0002) planes out of their ideal position in the rollitzg pkule. WHEN a metal is subjected to cold working such as drawing, forming, or rolling, a crystallographic texture develops which can significantly alter its physical properties. One method for detecting this texture is X-ray diffraction, but Alers and Liu' have recently pointed out how the prediction of anisotropic physical properties from pole figures alone is not always accurate due to differences in interpretation. Variations in Young's modulus with orientation or, more completely, the values of the effective elastic constants of the worked metal, also serve to indicate the presence of a texture. In fact, as Alers and Liu' pointed out, calculated variations in Young's modulus for assumed orientations, when compared with experimental data, can be used to eliminate some of the uncertainty in interpretation of X-ray pole figures. Thus, elasticity measurements can serve not only to clarify any unusual elastic behavior of worked metal, but also to detect and in part determine the nature of its texture. X-ray determination of the texture of rolled beryllium has been reported by Smigelskas and Barrett,2 who found a strong texture of (0002) in the rolling plane with (1070) planes normal to the rolling direction. In the case of metal rolled at room temperature, they reported that [1010] directions also appeared at positions 60 and 120 deg from the rolling direction in the rolling plane, while in more recent work Keeler3 found these directions were also tilted towards the rolling plane. The texture for beryllium rolled at 80O0C, however, only showed (1010) planes normal to the rolling direction and the spread of (0002) planes out of the rolling plane was less. In looking for elastic anisotropy one might consider unidirectional rolling of a metal as introducing an or-thorhombic symmetry through reorientation of the grains, since the three deformations, compression, extension in the rolling direction, and extension in the cross direction, are orthogonal to each other and unequal in magnitude. Thus the rolled sheet could be treated like an orthorhombic single crystal and the nine stiffness constants of the elasticity tensor used to calculate the anisotropy of Young's modulus, the shear modulus and Poisson's ratio. In this case we could write: which is symmetric about its diagonal. Borik and Alers4 have recently used this approach on rolled die steel with very good results. They found, however, that instead of displaying orthorhombic elastic symmetry their specimens could be considered tetragonal in which case Cr1 = c22, c13 = Ca, and c44 =cjj. This conclusion was made solely on the basis of the measured tensor elements, and serves to point out the advantage of this method for studying the anisotropy of rolled metals. Their calculated values for Young's modulus as a function of angle in the rolling plane also checked very well with direct measurements made on different specimens using the resonance technique. In the present study, cross-rolled beryllium was used which had been unidirectionally rolled about 11 pct for the final reduction. This imparted a slight anisotropy in the rolling plane which was detected both by X-ray techniques and elasticity measurements. For purposes of discussion in this paper, the rolling direction is that direction in which the most reduction passes were made and cross direction is the normal to the rolling direction in the rolling plane. It was also decided to consider the rolled sheet as displaying orthorhombic symmetry for the purpose of obtaining elasticity samples with the direction defined as in Table I. Any change in the final symmetry attributed to the sheet would then be made on the basis of the measured elastic stiffnesses. The final data would then be compared with that expected from the X-ray study and that reported for beryllium single crystals. EXPERIMENTAL PROCEDURE Rolling Schedule. The samples used in this study were taken from a large sheet which, because of its size, had to be unidirectionally rolled for the final reduction. The resulting texture was that of cross-rolled metal with a slight unidirectional texture superimposed. A cast beryllium ingot, 9.500 in. sq by 3.325 in. thick, was cross-rolled to 81 pct reduction followed by unidirectional rolling for an additional 11 pct to give a total reduction of 92 pct. The thickness of the final sheet ranged from 0.265 to 0.280 in. Reduction up to 67 pct was done at 980°C and the final 25 pct at 870°C. Analysis for metallic impurities showed aluminum 0.06 pct, iron 0.19 pct, and silicon 0.11 pct, giving a beryllium purity of 99.64 pct.
Citation
APA:
(1968) PART IV - Papers - The Elastic Anisotropy of Rolled BerylliumMLA: PART IV - Papers - The Elastic Anisotropy of Rolled Beryllium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.