PART IV - The Solubility of Nitrogen in Liquid Fe-Ni-Co Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 949 KB
- Publication Date:
- Jan 1, 1967
Abstract
The solubility of nitrogen in liquid binary and ternary Fe-Ni-Co alloys has been measured by the Sieverts' method between 1550°and 1700°C. Solubility data and standard free energzes and enthalpies of solution for nitrogen in the alloys are presented. Interaction parameters are discussed and presented for binary and ternary alloys. MOST of the studies of nitrogen solubility in liquid metals have been directed toward the dilute alloys of iron. Several of these investigations have included measurements of the nitrogen solubility in Fe-Ni al10s'- and in Fe-Co alloys.435 There has been some work, however, that has extended across the e-i-" and F-CO" binaries. This investigation was undertaken to determine the nitrogen solubility in both binary and ternary alloys of the Fe-Ni-Co system. It was also hoped that the differences between earlier studies might be resolved. EXPERIMENTAL METHOD This investigation was made using a Sieverts' apparatus described previously." The nickel (99.85 pct) and cobalt (99.9 pct) were obtained from Sherritt-Gordon Mines, Ltd., and the iron (99.95 pct) was Fer-rovac-E obtained from Crucible Steel Co. Recrystal-lized alumina crucibles were used throughout the entire investigation with no evidence of crucible-melt reaction. Melt temperatures were measured with an optical pyrometer and the temperature scale calibrated against the melting points of the three pure metals. The emissivity of the melt was assumed to be a linear function of composition for all alloys, as has been shown for Fe-Ni alloys.lZ The emissivity of the pure metals at 1600°C were taken as 0.43 for iron, 0.44 for cobalt, and 0.45 for nickel. Using these emissivities, the trans mis sivity of the system was found to be 0.51 i 0.01. The Sieverts' method was used for this study and followed the procedures outlined previously.l' The individual metals were weighed to give about 100 g of alloy. The alloys were melted in the crucible under a partial pressure of argon. The system was evacuated, and the "hot volume" was measured with argon. To avoid the errors caused by vaporization, the melt was held under vacuum only long enough to ensure that all of the gas in the system had been removed. The influence of any small amount of vaporization on the "hot volume" was shown to be negligible by measuring the "hot volume" after a run. This measurement agreed with that made at the start of the run within the implicit error, 0.2 cc, caused by the limitations in accurately reading the buret. The solubility-pressure relationship was measured in the pure metals and in several alloy compositions throughout the ternary system. These measurements were made by admitting measured amounts of nitrogen to the system, and then determining the equilibrium nitrogen pressure above the melt. This method has the distinct advantage of higher accuracy, particularly at lower pressures, than measurements made by withdrawing gas from the system to reduce the pressure after determining the solubility at 1 atm nitrogen pressure. This latter method has a practical lower limit of about 0.4 atm where an increased error is encountered because the buret must be emptied to permit further measurements at lower pressures. By determining the relation between apparent solubility and pressure, it was possible to make a good estimate of the initial nitrogen content of the metal from the intercept of the solubility curve extrapolated to zero pressure.11 DISCUSSION The solubility data corrected to 1 atm nitrogen pressure are summarized in Table I. The reported solubility has been corrected for the initial nitrogen content of the alloys. The initial nitrogen contents fell between 0.0002 and 0.0010 wt pct, and were lower in the iron and nickel than in the cobalt. Sieverts' law was obeyed in all alloys at pressures up to 1 atm. Examples of this behavior are shown in Fig. 1. The reaction for solution of nitrogen is Taking the standard state as 1 wt pct N in the alloy and the reference state as nitrogen at infinite dilution in the alloy, and noting the adherence to Sieverts' law, K becomes the solubility of nitrogen in the alloy at 1 atm pressure. Thus the solubility data of Table I were used directly to calculate the standard free energy for the solution reaction. These results are also presented in Table I. The enthalpy of solution is also summarized in Table I as calculated from a form of the van't Hoff relation: Iron-Nickel System. The data for the solubility of nitrogen in liquid Fe-Ni binary alloys is presented in Fig. 2 along the with data of aito, Schenck et al.,' and Humbert and 1liott.l' The data for studies of nitrogen solubility in Fe-Ni alloys containing less than 20 pc t i'- are not presented in Fig. 2, although they are in good agreement with the present work. The results of this study are in good agreement with Schenck
Citation
APA:
(1967) PART IV - The Solubility of Nitrogen in Liquid Fe-Ni-Co AlloysMLA: PART IV - The Solubility of Nitrogen in Liquid Fe-Ni-Co Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.