Part IX - Papers - The Diffusion of Hydrogen in Liquid Iron

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 2198 KB
- Publication Date:
- Jan 1, 1968
Abstract
The diffusion rate of hydrogen in liquid iron has been measured by a gas-liquid metal diffusion cell technique. The diffusion cell was formed by immersing an alumina tube containing hydrogen gas at 1 atm in a bath of stagnant liquid iron. The change in the composition of the melt in the cell was determined by measuring the rate of absorption of the gas in the cell. The appropriate solution to Fick's second law was used to examine the data and calculate diffusivi-ties. The absorption of hydrogen in stagnant pure liquid iron has been found to be diffusion-controlled. The results show that the chemical diffusion coefficient, D, of hydrogen in pure iron in the range of 1547" to 1726°C can be represented by the following Arrhenius relation: D(sq cnz per sec) = 3.2 x X exp(- 3300 i 1800/RT) where the uncertainty in the activation energy corresponds to the YO pct confidence level. Oxygen in the melt (above 0.015 pct 2) increased the apparent rate of absorption of hydrogen. The importance of diffusion data on liquid metals for predicting the rates of certain metallurgical processes has been recognized for a long time. Moreover, these data are much needed to test and develop theory for diffusion in liquid metals. Despite this practical and theoretical interest, however, relatively little reliable information about diffusion in liquid metals is available in the literature. This is particularly true for gas components such as hydrogen, oxygen, and nitrogen in liquid metals, where almost no data on chemical diffusion coefficients are to be found. This is probably due to a multitude of experimental difficulties particularly associated with high-temperature melts. In an effort to fill this gap in information, a research program was undertaken to study the diffusivities and rates of solution of gases in liquid metals. This paper presents the results of a study of the diffusion of hydrogen in liquid iron. EXPERIMENTAL METHOD Two methods for the study of the kinetics of dissolution of gases in liquid metals are being employed in this laboratory. Both involve the measurement of the volume of gas absorbed by the melt as a function of time and as such both avoid the uncertainties involved in chemical analyses of quenched samples for relatively small amounts of gas. In the first method, the gas dissolves in an inductively stirred melt and, in the absence of a slow surface reaction, the results are often interpreted in terms of mass transport across a liquid "boundary layer" between the homogeneous gas phase and well-stirred part of the melt. Other interpretations of the results of such experiments have also been described in the literature.1'5 In the second method a gas-liquid metal diffusion cell is used.' The gas dissolves in a cylindrical column of stagnant liquid metal and, in the absence of a slow surface reaction, the results are interpreted in terms of a non-steady-state diffusion solution to Fick's second law. The weakness of the first method is that while it gives information on the mechanism of absorption by stirred melts it yields an overall rate constant which even in the simplest cases depends on the nature and the thickness of the "mass transport layer" or "boundary layer". It yields no values of diffusion coefficients. The second method was used in this research because in many cases it is possible to determine the diffusion coefficient of the gas component in the liquid metal. In this research it has been utilized to measure diffusion coefficients of hydrogen in liquid iron. The apparatus used was essentially the same as that described by Mizikar, Grace, and par lee but certain modifications have been introduced to meet the elevated temperatures and special conditions of this research. Fig. 1 is a schematic drawing of the apparatus and Table I gives the identification of various parts in this figure. The diffusion cell, shown in detail in Fig. 2, was formed by immersing an impervious alumina tube (hereafter called absorption tube) in a bath of pure liquid iron contained in an alumina crucible. Two types of tubes were used, Morganite triangle RR and McDanel AP35. The crucible was contained in a vertical impervious alumina combustion tube (32 mm ID by 914 mm long) which was closed at both ends by water-cooled brass heads employing O-ring compression seals, Fig. 1. A protection tube enclosing a Pt, 5 pct Rh-Pt, 20 pct Rh thermocouple was introduced through the lower end of the combustion tube
Citation
APA:
(1968) Part IX - Papers - The Diffusion of Hydrogen in Liquid IronMLA: Part IX - Papers - The Diffusion of Hydrogen in Liquid Iron. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.