Part IX – September 1968 - Papers - Critical Current of Superconducting Nb (Cb)-Zr-Ti Alloys in High Magnetic Field

The American Institute of Mining, Metallurgical, and Petroleum Engineers
T. Doi F. Ishida U. Kawabe M. Kitada
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
1030 KB
Publication Date:
Jan 1, 1969

Abstract

The relations between micros tructures and critical current density in transverse magnetic field were experimentally investigated due to each transformation of the 0 to 0' + P" phases at 700' C for superconductmainly examined using replication electron microscopy. The ß' or a precipitates were found to pin down magnetic flux lines in these alloys. The effects of precipitation upon the critical current density were discussed in relation with the size, spacing, and characler of these precipitates. HIGH magnetic field superconductors, such as Nb-Zr, Nb-Ti, and Nb-Zr-Ti alloys, have been recently put to extensive practical use as winding materials for superconducting magnets.13 The critical current density of these hard superconductors under an applied magnetic field is an important characteristic for magnet materials and is very sensitive to metallurgical structure. It is generally known that the critical current density is increased by introducing dislocations and precipitates into a superconductor; that is, dislocations and precipitates are presumed to be barriers that hinder quantized flux lines from moving.4'5 Theoretical6'7 and experimental analyses of the motion of flux lines and the interaction between flux lines and various defects have already been reported by many authors. Metallographic analysis of high magnetic field superconductors such as Nb-Zr and Nb-Ti is difficult, so that no quantitative relationship between microstruc-ture and critical current density has been established yet. In this paper, the effect of precipitation on the critical current density in magnetic field was investigated for two superconducting alloys, Nb-40Zr-10Ti and Nb-5Zr-60Ti. In these alloys the resistive critical field H, at 4.2oK was about 100 kG and the critical current density Jc at 80 kG was of the order of 104 amp per sq cm.13-l5 The superconducting properties were examined in relation to the microstructural changes due to transformation of i) the ß to ß' + ß" phases at 700°C for Nb-40Zr-10Ti alloy and ii) the ß to a + ß phases at 500°C for Nb-5Zr-6OTi alloy. The effect of size, spacing, and character of precipitates on flux line pinning was in particular examined. The microstructures were studied by means of residual resistivity, microhardness, and tensile strength measurements as well as by X-ray diffraction, optical, and replication electron microscopies. I) EXPERIMENTAL PROCEDURE Pure niobium, zirconium, and titanium, in the form of rods 0.8 cm in diam, served as raw materials. Results of chemical analyses of these rods are given in Table I. Ingots of the alloys, 0.4 cm in diam and 3 cm in length, were prepared by means of levitation melting, utilizing a copper mold in an argon-gas atmosphere. Samples from the ingot then were cold-worked by grooved mill to 0.2 cm in diam, heat-treated homogeneously (in the ß phase region) for 5 hr at 1100° in a vacuum of 1 x 106 Torr, and finally cold-drawn to 0.025 cm in diam. For heat treatments, samples were wrapped in niobium foil and sealed in an argon-gas atmosphere in fused quartz capsules. Water quenching was done after each heat treatment. Subsequently H-J, were performed at 4.2° by slowly transporting the current through the samples 4 cm long, under transverse magnetic field, until the least detectable resistive terminal voltage was observed. The resistive critical field H, was taken as the field at which 100 pv appeared at 4.2°K across a sample 3 cm in length, with a current of 5 ma. The critical temperature T, was measured by means of a conventional four-probe resistivity technique and taken as the temperature at which the sample resistance reached one-half of full restoration of the normal-state resistance with a current l ma flowing through a sample 2 cm in length. Precipitates were observed by means of optical microscopy and carbon replication electron microscopy. The etching solution consisted of 5 ml HF, 10 ml H2SO4 10 ml H2O2, and 50 ml H2O, and shadowed carbon replicas were examined in a itachi HU-11 electron microscope operated at 50 kv. X-ray diffraction photographs were taken by a 11.46-cm-diam Debye-Scher-rer camera using copper Ka radiation. The micro-hardness was measured under a load of 200 g using
Citation

APA: T. Doi F. Ishida U. Kawabe M. Kitada  (1969)  Part IX – September 1968 - Papers - Critical Current of Superconducting Nb (Cb)-Zr-Ti Alloys in High Magnetic Field

MLA: T. Doi F. Ishida U. Kawabe M. Kitada Part IX – September 1968 - Papers - Critical Current of Superconducting Nb (Cb)-Zr-Ti Alloys in High Magnetic Field. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account