Part IX – September 1968 - Papers - Electron Microscopy of Cu-Zn-Si Martensites

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 332 KB
- Publication Date:
- Jan 1, 1969
Abstract
The structure and morphology of thermoelastic and burst type martensitic phases that form upon cooling in Cu-Zn-Si p phase alloys have been studied by transmission electron microscopy. The martensitic phases are composed of a lamellar mixture of two close-packed structures with different stacking sequence, namely ABCBCACAB (orthorhombic) and ABC (fcc). Striations within thermoelastic martensite are most likely produced during interaction with impinging burst-type martensite and not as a consequence of secondary shears. In a study of the martensitic transformation in ternary Cu-Zn based 0 phase alloys1 the dependence of the martensitic transformation temperature, M,, with composition shows variations for elements within a constant valence subgroup and between different subgroups. Such variations are not reflected in a change in habit plane, which is approximately the same for each ternary alloy, namely in the vicinity of (2, 11, 12 Ip. The fact that the habit plane remained constant, despite large differences in M, temperature and electron concentration, suggested2 that the crystal structures of the martensitic phases could be nearly the same. Crystal structures of ternary Cu-Zn based martensites have been determined recently for alloys containing the three-valent elements gallium3, 4 and aluminm. The present studies have been made to examine the structures and morphology of the martensitic phase in ternary Cu-Zn based alloys containing a four-valent element, silicon. I) PROCEDURE Two alloys were prepared by melting and casting weighed quantities of the component high-purity metals in sealed quartz tubes under half an atmosphere of argon. They were subsequently remelted by levitation under a protective atmosphere of argon. After allowing for losses of zinc as determined by the difference in weight before and after casting, the compositions in atomic percent of both alloys were established to be Cu-33.5 Zn-1.8 Si and Cu-27 Zn-5.0 Si. These alloys were homogenized in the P-phase field for 2 days at 800" C. Bulk samples consisted of a martensite phase at room temperature, the M, temperature being approximately 30' and 200" for the 1.8 and the 5 pct Si alloys, respectively. Thin disks were cut from the ingots using a spark machine, and they were heated for 5 min at 800' and quenched into water in order to obtain martensite. These slices were thinned chemically at room temperature in a solution consisting of 40 parts HN03, 50 part H3PO4, and 10 parts HC1 and thinned further electrolytically by the Window technique, using a voltage of 15 to 25 v and a mixture of 1 part HN03 and 2 parts methanol, which was kept at a temperature near -30° c. Foils were examined by transmission electron microscopy using a Philips EM 200 electron microscope. 11) RESULTS AND DISCUSSION 1) Structure and Morphology. Fig. 1 shows the martensitic phase in the alloy containing 1.8 at. pct Si. This phase is composed of contiguous platelets, each containing striations. The direction of the striations changes at the boundary between individual platelets. These internal markings resemble the striations that are usually identified as stacking faults, as for example in Cu-A1 martensites6-a or the lamellar mixture of two close-packed phases in Cu-Zn-Ga marten-sites.3p '9 lo In the present alloys, selected-area diffraction experiments have been obtained in order to determine the nature of the striations. Figs. 2(a), (61, and (c) are electron diffraction patterns of an area inside a single martensite plate. Fig. 2(a) contains diffraction spots which correspond to two close-packed structures with different stacking sequences, namely ABCBCACAB (orthorhombic) and ABC (fcc). Spots belonging only to the fcc structure are indicated by arrows. By tilting the foil either the orthorhombic structure, Fig. 2(b), or the cubic structure shown in Fig. 2(c) may be obtained. When the foil is oriented so that only the diffraction spots of the orthorhornbic structure are present, bright-field illumination shows small lamellae, as seen in Fig. 3. In this figure the lamellae that belong to the fcc structure are bright bands inside the dark extinction contours of the orthorhombic structure. The boundaries of the lamellae are parallel to the basal planes of the orthorhombic structure and to the {Ill} planes of the cubic structure, the close-packed directions of both structures being parallel. The 5 pct Si alloy shows similar features as those described for the 1.8 at. pct Si alloy.
Citation
APA:
(1969) Part IX – September 1968 - Papers - Electron Microscopy of Cu-Zn-Si MartensitesMLA: Part IX – September 1968 - Papers - Electron Microscopy of Cu-Zn-Si Martensites. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.