Part IX – September 1968 - Papers - Enhanced Ductility in Binary Chromium Alloys

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Joseph R. Stephens William D. Klopp
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
666 KB
Publication Date:
Jan 1, 1969

Abstract

A substantial reduction in the 300°F ductile-to-brittle transition temperature for unalloyed chromium was achieved in alloys from systems which resemble the Cr-Re system. These alloy systems include Cr-Ru, Cr-Co, and Cr-Fe. Transition temperatures ranged from -300° F for Cr-35 at. pct Re to -75°F for 0-50 at. pct Fe. The ductile alloys have high grain gvowth rates at elevated temperatures. Also, Cr-24 at. pct Ru exhibited enhanced tensile ductility at elevated temperatures, characteristic of superplas-ticity. It is concluded that phase relations play an importarlt role in the rhenium ductilizing effect. The ductile alloys have compositions near the solubility limit in systems with a high terminal solubility and which contain an intermediate o phase. The importance of enhanced high-temperature ductility to the rhenium ductilizing effect is not well understood although both may have common basic features. CHROMIUM alloys are currently being investigated for advanced air-breathing engine applications, primarily as turbine buckets and/or stator vanes. The inherent advantages of chromium as a high-temperature structural material are well-known1 and include its high melting point relative to superalloys, moderately high modulus of elasticity, low density, good thermal shock resistance, and superior oxidation resistance as compared to the other refractory metals. Additionally, it is capable of being strengthened by conventional alloying techniques. The major disadvantage of chromium is its poor ductility at ambient temperatures, a problem which it shares with the other two Group VI-A metals, molybdenum and tungsten. For chromium, the problem is further amplified by its susceptibility to nitrogen em-brittlement during high-temperature air exposure. In cases of severe nitrogen embrittlement, the ductile-to-brittle transition temperature might exceed the steady-state operating temperature of the component. The low ductility of chromium would make stator vanes and turbine buckets prone to foreign object damage. The present work was directed towards improvement of the ductility of chromium through alloying, with the anticipation that any improvements so obtained might be additive to strengthening improvements achieved through different types of alloying. The alloying additions for ductility were selected on the basis of the similarity of their phase relations with chromium to that of Cr-Re. The reduction in the ductile-to-brittle transition temperatures of the Group VI-A metals as a result of alloying with 25 to 35 pct Re is well established.a4 the temperature range -300" to 750° F. This phenomenon is commonly referred to as the &apos;<rhenium ductilizing effect"; this term is also used to describe systems in which the ductilizing element is not rhenium. Other alloy systems which have recently been shown to exhibit the rhenium ductilizing effect include Cr-Co and c-Ru.= In order to explore the generality of this effect, alloys were selected from systems having phase relations similar to that of Cr-Re, primarily a high solubility in chromium and an intermediate o phase. The following compositions were prepared: Cr-35 and -40Re; Cr-10, -15, -18, -21, -24, and -27 pct Ru; Cr-25 and -30 pct Co; Cr-30, -40, and -50 pct Fe; Cr-45, -55, and -65 pct Mn. Seven other systems were also studied which partially resemble Cr-Re. These systems have extensive chromium solid solutions or a complex intermediate phase, not necessarily o. The compositions evaluated include the following: Cr-20 pct Ti; Cr-15, -30, and -45 pct V; Cr-2.5 pct Cb; Cr-2.5 pct Ta; Cr-20 pct Ni; Cr-6, -9, -12, and -15 pct 0s; Cr-10 pct Ir. The compositions of alloys in these systems were chosen near the solubility limit for the chromium-base solid solutions, since in the Group VI-A Re systems, the saturated alloys are the most ductile. These alloys were evaluated on the basis of hardness, fabricability, and ductile-to-brittle transition temperatures. In addition to the studies of alloying effects on ductility, an exploratory investigation was conducted on mechanical properties at high temperatures in Cr-Ru alloys EXPERIMENTAL PROCEDURE High-purity chromium prepared by the iodide deposition process was employed for all studies. An analysis of this chromium is given in Table I. Alloying elements were obtained in the following forms: Commercially pure powder — iridium, osmium, rhenium, and ruthenium. Arc-melted ingot — titanium and vanadium. Electrolytic flake — iron, manganese, and nickel. Sheet rolled from electron-bearn-melted ingot — columbium and tantalum. Electron-beam-melted ingot — cobalt. Sheet rolled from arc-melted ingot — rhenium. All alloys were initially consolidated by triple arc melting into 60-g button ingots on a water-cooled hearth using a nonconsumable tungsten electrode. The melting atmosphere was Ti-gettered Ar at a pressure of 20 torr. The ingots were drop cast into rectangular slabs and fabricated by heating at 1470" to 2800° F in argon followed by rolling in air. Bend specimens measuring 0.3 by 0.9 in. were cut from the 0.035-in. sheet parallel to the rolling direction. The specimens were annealed for 1 hr in argon, furnace cooled or water quenched, and electropolished prior to testing. Three-point loading bend tests were conducted at a crosshead speed of l-in. per min over
Citation

APA: Joseph R. Stephens William D. Klopp  (1969)  Part IX – September 1968 - Papers - Enhanced Ductility in Binary Chromium Alloys

MLA: Joseph R. Stephens William D. Klopp Part IX – September 1968 - Papers - Enhanced Ductility in Binary Chromium Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account